ﻻ يوجد ملخص باللغة العربية
The unscented Kalman inversion (UKI) presented in [1] is a general derivative-free approach to solving the inverse problem. UKI is particularly suitable for inverse problems where the forward model is given as a black box and may not be differentiable. The regularization strategy and convergence property of the UKI are thoroughly studied, and the method is demonstrated effectively handling noisy observation data and solving chaotic inverse problems. In this paper, we aim to make the UKI more efficient in terms of computational and memory costs for large scale inverse problems. We take advantages of the low-rank covariance structure to reduce the number of forward problem evaluations and the memory cost, related to the need to propagate large covariance matrices. And we leverage reduced-order model techniques to further speed up these forward evaluations. The effectiveness of the enhanced UKI is demonstrated on a barotropic model inverse problem with O($10^5$) unknown parameters and a 3D generalized circulation model (GCM) inverse problem, where each iteration is as efficient as that of gradient-based optimization methods.
A useful approach to solve inverse problems is to pair the parameter-to-data map with a stochastic dynamical system for the parameter, and then employ techniques from filtering to estimate the parameter given the data. Three classical approaches to f
The unscented Kalman inversion (UKI) method presented in [1] is a general derivative-free approach for the inverse problem. UKI is particularly suitable for inverse problems where the forward model is given as a black box and may not be differentiabl
This work develops a new multifidelity ensemble Kalman filter (MFEnKF) algorithm based on linear control variate framework. The approach allows for rigorous multifidelity extensions of the EnKF, where the uncertainty in coarser fidelities in the hier
Quaternion matrices are employed successfully in many color image processing applications. In particular, a pure quaternion matrix can be used to represent red, green and blue channels of color images. A low-rank approximation for a pure quaternion m
We introduce a novel, computationally inexpensive approach for imaging with an active array of sensors, which probe an unknown medium with a pulse and measure the resulting waves. The imaging function uses a data driven estimate of the internal wave