ترغب بنشر مسار تعليمي؟ اضغط هنا

Statistical Characterization of Wireless MIMO Channels in Mode-Stirred Enclosures

275   0   0.0 ( 0 )
 نشر من قبل Mir Lodro
 تاريخ النشر 2021
والبحث باللغة English
 تأليف Mir Lodro




اسأل ChatGPT حول البحث

We present the statistical characterization of a 2x2 Multiple-Input Multiple-Output wireless link operated in a mode-stirred enclosure, with channel state information available only at the receiver (agnostic transmitter). Our wireless channel measurements are conducted in absence of line of sight and varying the inter-element spacing between the two antenna elements in both the transmit and receive array. The mode-stirred cavity is operated: i) at a low number of stirrer positions to create statistical inhomogeneity; ii) at two different loading conditions, empty and with absorbers, in order to mimic a wide range of realistic equipment level enclosures. Our results show that two parallel channels are obtained within the confined space at both the operating conditions. The statistical characterization of the wireless channel is presented in terms of coherence bandwidth, path loss, delay spread and Rician factor, and wideband channel capacity. It is found that the severe multipath fading supported by a highly reflecting environment creates unbalance between the two Multiple-Input Multiple-Output channels, even in presence of substantial losses. Furthermore, the channel capacity has a multi-modal distribution whose average and variance scale monotonically with the number of absorbers. Results are of interest in IoT devices, including wireless chip-to-chip and device-to-device communications, operating in highly reflective environments.



قيم البحث

اقرأ أيضاً

Wireless connectivity creates a computing paradigm that merges communication and inference. A basic operation in this paradigm is the one where a device offloads classification tasks to the edge servers. We term this remote classification, with a pot ential to enable intelligent applications. Remote classification is challenged by the finite and variable data rate of the wireless channel, which affects the capability to transfer high-dimensional features and thus limits the classification resolution. We introduce a set of metrics under the name of classification capacity that are defined as the maximum number of classes that can be discerned over a given communication channel while meeting a target classification error probability. The objective is to choose a subset of classes from a library that offers satisfactory performance over a given channel. We treat two cases of subset selection. First, a device can select the subset by pruning the class library until arriving at a subset that meets the targeted error probability while maximizing the classification capacity. Adopting a subspace data model, we prove the equivalence of classification capacity maximization to Grassmannian packing. The results show that the classification capacity grows exponentially with the instantaneous communication rate, and super-exponentially with the dimensions of each data cluster. This also holds for ergodic and outage capacities with fading if the instantaneous rate is replaced with an average rate and a fixed rate, respectively. In the second case, a device has a preference of class subset for every communication rate, which is modeled as an instance of uniformly sampling the library. Without class selection, the classification capacity and its ergodic and outage counterparts are proved to scale linearly with their corresponding communication rates instead of the exponential growth in the last case.
Favorable propagation (FP) and channel hardening (CH) are desired properties in massive multiple-input multiple-output (MIMO) systems. To date, these properties have primarily been analyzed for classical textit{statistical} channel models, or textit{ ray-based} models with very specific angular parameters and distributions. This paper presents a thorough mathematical analysis of the asymptotic system behavior for ray-based channels with textit{arbitrary} ray distributions, and considers textit{two} types of antenna array structures at the cellular base station: a uniform linear array (ULA) and a uniform planar array (UPA). In addition to FP and channel hardening, we analyze the textit{large system potential} (LSP) which measures the asymptotic ratio of the expected power in the desired channel to the expected total interference power when both the antenna and user numbers grow. LSP is said to hold when this ratio converges to a positive constant. The results demonstrate that while FP is guaranteed in ray-based channels, CH may or may not occur depending on the nature of the model. Furthermore, we demonstrate that LSP will not normally hold as the expected interference power grows logarithmically for both ULAs and UPAs relative to the power in the desired channel as the system size increases. Nevertheless, we identify some fundamental and attractive properties of massive MIMO in this limiting regime.
50 - A. Matera , V. Rampa , M. Donati 2020
Most of the indoor coverage issues arise from network deployments that are usually planned for outdoor scenarios. Moreover, the ever-growing number of devices with different Radio Access Technologies (RATs), expected for new 5G scenarios and to maint ain compatibility with older cellular standards (mostly 3G/4G), worsen this situation thus calling for novel bandwidth-efficient, low-latency and cost-effective solutions for indoor coverage. To solve this problem, Centralized Radio Access Network (C-RAN) architectures have been proposed to provide dense and controlled coverage inside buildings. However, all-digital C-RAN solutions are complex and expensive when indoor layout constraints and device costs are considered. We discuss here an analog C-RAN architecture, referred to as Analog MIMO Radio-over-Copper (A-MIMO-RoC), that aims at distributing RF signals indoors over distances in the order of 50 m. The all-analog passive-only design presented here proves the feasibility of analog relaying of MIMO radio signals over LAN cables at frequency bandwidth values up to 400 MHz for multi-RAT applications. After asserting the feasibility of the A-MIMO-RoC platform, we present some experimental results obtained with the proposed architecture. These preliminary results show that the A-MIMO-RoC system is a valid solution towards the design of dedicated 4G/5G indoor wireless systems for the billions of buildings which nowadays still suffer from severe indoor coverage issues.
MIMO systems in the context of 6G Vehicle-to-Everything (V2X) will require an accurate channel knowledge to enable efficient communication. Standard channel estimation techniques, such as Unconstrained Maximum Likelihood (U-ML), are extremely noisy i n massive MIMO settings, while structured approaches, e.g., compressed sensing, are suited to low-mobility scenarios and are sensitive to hardware impairments. We propose a novel Multi-Vehicular algebraic channel estimation method for 6G V2X based on unsupervised learning which exploits recurrent vehicle passages in typical urban settings. Multiple training sequences are clustered via K-medoids algorithm based on their textit{algebraic similarity} to retrieve the MIMO channel eigenmodes, which can be used to improve the channel estimates. Numerical results show remarkable benefits of the proposed method in terms of Mean Squared Error (MSE) compared to standard U-ML solution (15 dB less).
Reconfigurable intelligent surfaces (RISs) have emerged as a promising technique to enhance the system spectral efficiency. This letter investigates the ergodic channel capacity (ECC) of an RIS-aided multiple-input multiple-output channel under the a ssumption that the transmitter-RIS, RIS-receiver, and transmitter-receiver channels contain deterministic line-of-sight paths. Novel expressions are derived to characterize the upper and lower bounds of the ECC. To unveil more system insights, asymptotic analyses are performed to the system ECC in the limit of large signal-to-noise ratio (SNR) and number of reflecting elements (REs). Theoretical analyses suggest that the RISs deployment can shape the ECC curve by influencing its high-SNR power offset and the ECC can get improved by increasing the number of REs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا