ﻻ يوجد ملخص باللغة العربية
Most of the indoor coverage issues arise from network deployments that are usually planned for outdoor scenarios. Moreover, the ever-growing number of devices with different Radio Access Technologies (RATs), expected for new 5G scenarios and to maintain compatibility with older cellular standards (mostly 3G/4G), worsen this situation thus calling for novel bandwidth-efficient, low-latency and cost-effective solutions for indoor coverage. To solve this problem, Centralized Radio Access Network (C-RAN) architectures have been proposed to provide dense and controlled coverage inside buildings. However, all-digital C-RAN solutions are complex and expensive when indoor layout constraints and device costs are considered. We discuss here an analog C-RAN architecture, referred to as Analog MIMO Radio-over-Copper (A-MIMO-RoC), that aims at distributing RF signals indoors over distances in the order of 50 m. The all-analog passive-only design presented here proves the feasibility of analog relaying of MIMO radio signals over LAN cables at frequency bandwidth values up to 400 MHz for multi-RAT applications. After asserting the feasibility of the A-MIMO-RoC platform, we present some experimental results obtained with the proposed architecture. These preliminary results show that the A-MIMO-RoC system is a valid solution towards the design of dedicated 4G/5G indoor wireless systems for the billions of buildings which nowadays still suffer from severe indoor coverage issues.
We present the statistical characterization of a 2x2 Multiple-Input Multiple-Output wireless link operated in a mode-stirred enclosure, with channel state information available only at the receiver (agnostic transmitter). Our wireless channel measure
In this paper, we consider a single-cell multi-user orthogonal frequency division multiple access (OFDMA) network with one unmanned aerial vehicle (UAV), which works as an amplify-and-forward relay to improve the quality-of-service (QoS) of the user
In multicell massive multiple-input multiple-output (MIMO) non-orthogonal multiple access (NOMA) networks, base stations (BSs) with multiple antennas deliver their radio frequency energy in the downlink, and Internet-of-Things (IoT) devices use their
Motivated by the increasing computational capacity of wireless user equipments (UEs), e.g., smart phones, tablets, or vehicles, as well as the increasing concerns about sharing private data, a new machine learning model has emerged, namely federated
Unmanned aerial vehicles (UAVs) can enhance the performance of cellular networks, due to their high mobility and efficient deployment. In this paper, we present a first study on how the user mobility affects the UAVs trajectories of a multiple-UAV as