ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamic cyber risk estimation with Competitive Quantile Autoregression

89   0   0.0 ( 0 )
 نشر من قبل Raisa Dzhamtyrova PhD
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The increasing value of data held in enterprises makes it an attractive target to attackers. The increasing likelihood and impact of a cyber attack have highlighted the importance of effective cyber risk estimation. We propose two methods for modelling Value-at-Risk (VaR) which can be used for any time-series data. The first approach is based on Quantile Autoregression (QAR), which can estimate VaR for different quantiles, i.e. confidence levels. The second method, we term Competitive Quantile Autoregression (CQAR), dynamically re-estimates cyber risk as soon as new data becomes available. This method provides a theoretical guarantee that it asymptotically performs as well as any QAR at any time point in the future. We show that these methods can predict the size and inter-arrival time of cyber hacking breaches by running coverage tests. The proposed approaches allow to model a separate stochastic process for each significance level and therefore provide more flexibility compared to previously proposed techniques. We provide a fully reproducible code used for conducting the experiments.



قيم البحث

اقرأ أيضاً

Understanding smart grid cyber attacks is key for developing appropriate protection and recovery measures. Advanced attacks pursue maximized impact at minimized costs and detectability. This paper conducts risk analysis of combined data integrity and availability attacks against the power system state estimation. We compare the combined attacks with pure integrity attacks - false data injection (FDI) attacks. A security index for vulnerability assessment to these two kinds of attacks is proposed and formulated as a mixed integer linear programming problem. We show that such combined attacks can succeed with fewer resources than FDI attacks. The combined attacks with limited knowledge of the system model also expose advantages in keeping stealth against the bad data detection. Finally, the risk of combined attacks to reliable system operation is evaluated using the results from vulnerability assessment and attack impact analysis. The findings in this paper are validated and supported by a detailed case study.
The Internet of Things (IoT) triggers new types of cyber risks. Therefore, the integration of new IoT devices and services requires a self-assessment of IoT cyber security posture. By security posture this article refers to the cybersecurity strength of an organisation to predict, prevent and respond to cyberthreats. At present, there is a gap in the state of the art, because there are no self-assessment methods for quantifying IoT cyber risk posture. To address this gap, an empirical analysis is performed of 12 cyber risk assessment approaches. The results and the main findings from the analysis is presented as the current and a target risk state for IoT systems, followed by conclusions and recommendations on a transformation roadmap, describing how IoT systems can achieve the target state with a new goal-oriented dependency model. By target state, we refer to the cyber security target that matches the generic security requirements of an organisation. The research paper studies and adapts four alternatives for IoT risk assessment and identifies the goal-oriented dependency modelling as a dominant approach among the risk assessment models studied. The new goal-oriented dependency model in this article enables the assessment of uncontrollable risk states in complex IoT systems and can be used for a quantitative self-assessment of IoT cyber risk posture.
Access to resources by users may need to be granted only upon certain conditions and contexts, perhaps particularly in cyber-physical settings. Unfortunately, creating and modifying context-sensitive access control solutions in dynamic environments c reates ongoing challenges to manage the authorization contexts. This paper proposes RASA, a context-sensitive access authorization approach and mechanism leveraging unsupervised machine learning to automatically infer risk-based authorization decision boundaries. We explore RASA in a healthcare usage environment, wherein cyber and physical conditions create context-specific risks for protecting private health information. The risk levels are associated with access control decisions recommended by a security policy. A coupling method is introduced to track coexistence of the objects within context using frequency and duration of coexistence, and these are clustered to reveal sets of actions with common risk levels; these are used to create authorization decision boundaries. In addition, we propose a method for assessing the risk level and labelling the clusters with respect to their corresponding risk levels. We evaluate the promise of RASA-generated policies against a heuristic rule-based policy. By employing three different coupling features (frequency-based, duration-based, and combined features), the decisions of the unsupervised method and that of the policy are more than 99% consistent.
The prominence and use of the concept of cyber risk has been rising in recent years. This paper presents empirical investigations focused on two important and distinct groups within the broad community of cyber-defense professionals and researchers: (1) cyber practitioners and (2) developers of cyber ontologies. The key finding of this work is that the ways the concept of cyber risk is treated by practitioners of cybersecurity is largely inconsistent with definitions of cyber risk commonly offered in the literature. Contrary to commonly cited definitions of cyber risk, concepts such as the likelihood of an event and the extent of its impact are not used by cybersecurity practitioners. This is also the case for use of these concepts in the current generation of cybersecurity ontologies. Instead, terms and concepts reflective of the adversarial nature of cyber defense appear to take the most prominent roles. This research offers the first quantitative empirical evidence that rejection of traditional concepts of cyber risk by cybersecurity professionals is indeed observed in real-world practice.
In this chapter, we present an approach using formal methods to synthesize reactive defense strategy in a cyber network, equipped with a set of decoy systems. We first generalize formal graphical security models--attack graphs--to incorporate defende rs countermeasures in a game-theoretic model, called an attack-defend game on graph. This game captures the dynamic interactions between the defender and the attacker and their defense/attack objectives in formal logic. Then, we introduce a class of hypergames to model asymmetric information created by decoys in the attacker-defender interactions. Given qualitative security specifications in formal logic, we show that the solution concepts from hypergames and reactive synthesis in formal methods can be extended to synthesize effective dynamic defense strategy using cyber deception. The strategy takes the advantages of the misperception of the attacker to ensure security specification is satisfied, which may not be satisfiable when the information is symmetric.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا