ترغب بنشر مسار تعليمي؟ اضغط هنا

Cyber Risk Analysis of Combined Data Attacks Against Power System State Estimation

114   0   0.0 ( 0 )
 نشر من قبل Kaikai Pan
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Understanding smart grid cyber attacks is key for developing appropriate protection and recovery measures. Advanced attacks pursue maximized impact at minimized costs and detectability. This paper conducts risk analysis of combined data integrity and availability attacks against the power system state estimation. We compare the combined attacks with pure integrity attacks - false data injection (FDI) attacks. A security index for vulnerability assessment to these two kinds of attacks is proposed and formulated as a mixed integer linear programming problem. We show that such combined attacks can succeed with fewer resources than FDI attacks. The combined attacks with limited knowledge of the system model also expose advantages in keeping stealth against the bad data detection. Finally, the risk of combined attacks to reliable system operation is evaluated using the results from vulnerability assessment and attack impact analysis. The findings in this paper are validated and supported by a detailed case study.



قيم البحث

اقرأ أيضاً

It is challenging to assess the vulnerability of a cyber-physical power system to data attacks from an integral perspective. In order to support vulnerability assessment except analytic analysis, suitable platform for security tests needs to be devel oped. In this paper we analyze the cyber security of energy management system (EMS) against data attacks. First we extend our analytic framework that characterizes data attacks as optimization problems with the objectives specified as security metrics and constraints corresponding to the communication network properties. Second, we build a platform in the form of co-simulation - coupling the power system simulator DIgSILENT PowerFactory with communication network simulator OMNeT++, and Matlab for EMS applications (state estimation, optimal power flow). Then the framework is used to conduct attack simulations on the co-simulation based platform for a power grid test case. The results indicate how vulnerable of EMS to data attacks and how co-simulation can help assess vulnerability.
A class of data integrity attack, known as false data injection (FDI) attack, has been studied with a considerable amount of work. It has shown that with perfect knowledge of the system model and the capability to manipulate a certain number of measu rements, the FDI attacks can coordinate measurements corruption to keep stealth against the bad data detection. However, a more realistic attack is essentially an attack with limited adversarial knowledge of the system model and limited attack resources due to various reasons. In this paper, we generalize the data attacks that they can be pure FDI attacks or combined with availability attacks (e.g., DoS attacks) and analyze the attacks with limited adversarial knowledge or limited attack resources. The attack impact is evaluated by the proposed metrics and the detection probability of attacks is calculated using the distribution property of data with or without attacks. The analysis is supported with results from a power system use case. The results show how important the knowledge is to the attacker and which measurements are more vulnerable to attacks with limited resources.
Modern electric power grid, known as the Smart Grid, has fast transformed the isolated and centrally controlled power system to a fast and massively connected cyber-physical system that benefits from the revolutions happening in the communications an d the fast adoption of Internet of Things devices. While the synergy of a vast number of cyber-physical entities has allowed the Smart Grid to be much more effective and sustainable in meeting the growing global energy challenges, it has also brought with it a large number of vulnerabilities resulting in breaches of data integrity, confidentiality and availability. False data injection (FDI) appears to be among the most critical cyberattacks and has been a focal point interest for both research and industry. To this end, this paper presents a comprehensive review in the recent advances of the defence countermeasures of the FDI attacks in the Smart Grid infrastructure. Relevant existing literature are evaluated and compared in terms of their theoretical and practical significance to the Smart Grid cybersecurity. In conclusion, a range of technical limitations of existing false data attack detection researches are identified, and a number of future research directions are recommended.
The increasing value of data held in enterprises makes it an attractive target to attackers. The increasing likelihood and impact of a cyber attack have highlighted the importance of effective cyber risk estimation. We propose two methods for modelli ng Value-at-Risk (VaR) which can be used for any time-series data. The first approach is based on Quantile Autoregression (QAR), which can estimate VaR for different quantiles, i.e. confidence levels. The second method, we term Competitive Quantile Autoregression (CQAR), dynamically re-estimates cyber risk as soon as new data becomes available. This method provides a theoretical guarantee that it asymptotically performs as well as any QAR at any time point in the future. We show that these methods can predict the size and inter-arrival time of cyber hacking breaches by running coverage tests. The proposed approaches allow to model a separate stochastic process for each significance level and therefore provide more flexibility compared to previously proposed techniques. We provide a fully reproducible code used for conducting the experiments.
Cyber-physical systems, such as self-driving cars or autonomous aircraft, must defend against attacks that target sensor hardware. Analyzing system design can help engineers understand how a compromised sensor could impact the systems behavior; howev er, designing security analyses for cyber-physical systems is difficult due to their combination of discrete dynamics, continuous dynamics, and nondeterminism. This paper contributes a framework for modeling and analyzing sensor attacks on cyber-physical systems, using the formalism of hybrid programs. We formalize and analyze two relational properties of a systems robustness. These relational properties respectively express (1) whether a systems safety property can be influenced by sensor attacks, and (2) whether a systems high-integrity state can be affected by sensor attacks. We characterize these relational properties by defining an equivalence relation between a system under attack and the original unattacked system. That is, the system satisfies the robustness properties if executions of the attacked system are appropriately related to executions of the unattacked system. We present two techniques for reasoning about the equivalence relation and thus proving the relational properties for a system. One proof technique decomposes large proof obligations to smaller proof obligations. The other proof technique adapts the self-composition technique from the literature on secure information-flow, allowing us to reduce reasoning about the equivalence of two systems to reasoning about properties of a single system. This technique allows us to reuse existing tools for reasoning about properties of hybrid programs, but is challenging due to the combination of discrete dynamics, continuous dynamics, and nondeterminism. To evaluate, we present three case studies motivated by real design flaws in existing cyber-physical systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا