ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamic real-time risk analytics of uncontrollable states in complex internet of things systems, cyber risk at the edge

301   0   0.0 ( 0 )
 نشر من قبل Petar Radanliev
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The Internet of Things (IoT) triggers new types of cyber risks. Therefore, the integration of new IoT devices and services requires a self-assessment of IoT cyber security posture. By security posture this article refers to the cybersecurity strength of an organisation to predict, prevent and respond to cyberthreats. At present, there is a gap in the state of the art, because there are no self-assessment methods for quantifying IoT cyber risk posture. To address this gap, an empirical analysis is performed of 12 cyber risk assessment approaches. The results and the main findings from the analysis is presented as the current and a target risk state for IoT systems, followed by conclusions and recommendations on a transformation roadmap, describing how IoT systems can achieve the target state with a new goal-oriented dependency model. By target state, we refer to the cyber security target that matches the generic security requirements of an organisation. The research paper studies and adapts four alternatives for IoT risk assessment and identifies the goal-oriented dependency modelling as a dominant approach among the risk assessment models studied. The new goal-oriented dependency model in this article enables the assessment of uncontrollable risk states in complex IoT systems and can be used for a quantitative self-assessment of IoT cyber risk posture.



قيم البحث

اقرأ أيضاً

Digital technologies have changed the way supply chain operations are structured. In this article, we conduct systematic syntheses of literature on the impact of new technologies on supply chains and the related cyber risks. A taxonomic/cladistic app roach is used for the evaluations of progress in the area of supply chain integration in the Industrial Internet of Things and Industry 4.0, with a specific focus on the mitigation of cyber risks. An analytical framework is presented, based on a critical assessment with respect to issues related to new types of cyber risk and the integration of supply chains with new technologies. This paper identifies a dynamic and self-adapting supply chain system supported with Artificial Intelligence and Machine Learning (AI/ML) and real-time intelligence for predictive cyber risk analytics. The system is integrated into a cognition engine that enables predictive cyber risk analytics with real-time intelligence from IoT networks at the edge. This enhances capacities and assist in the creation of a comprehensive understanding of the opportunities and threats that arise when edge computing nodes are deployed, and when AI/ML technologies are migrated to the periphery of IoT networks.
This article is focused on the economic impact assessment of Internet of Things (IoT) and its associated cyber risks vectors and vertices - a reinterpretation of IoT verticals. We adapt to IoT both the Cyber Value at Risk model, a well-established mo del for measuring the maximum possible loss over a given time period, and the MicroMort model, a widely used model for predicting uncertainty through units of mortality risk. The resulting new IoT MicroMort for calculating IoT risk is tested and validated with real data from the BullGuards IoT Scanner - over 310,000 scans - and the Garner report on IoT connected devices. Two calculations are developed, the current state of IoT cyber risk and the future forecasts of IoT cyber risk. Our work therefore advances the efforts of integrating cyber risk impact assessments and offer a better understanding of economic impact assessment for IoT cyber risk.
In this research article, we explore the use of a design process for adapting existing cyber risk assessment standards to allow the calculation of economic impact from IoT cyber risk. The paper presents a new model that includes a design process with new risk assessment vectors, specific for IoT cyber risk. To design new risk assessment vectors for IoT, the study applied a range of methodologies, including literature review, empirical study and comparative study, followed by theoretical analysis and grounded theory. An epistemological framework emerges from applying the constructivist grounded theory methodology to draw on knowledge from existing cyber risk frameworks, models and methodologies. This framework presents the current gaps in cyber risk standards and policies, and defines the design principles of future cyber risk impact assessment. The core contribution of the article therefore, being the presentation of a new model for impact assessment of IoT cyber risk.
The increasing value of data held in enterprises makes it an attractive target to attackers. The increasing likelihood and impact of a cyber attack have highlighted the importance of effective cyber risk estimation. We propose two methods for modelli ng Value-at-Risk (VaR) which can be used for any time-series data. The first approach is based on Quantile Autoregression (QAR), which can estimate VaR for different quantiles, i.e. confidence levels. The second method, we term Competitive Quantile Autoregression (CQAR), dynamically re-estimates cyber risk as soon as new data becomes available. This method provides a theoretical guarantee that it asymptotically performs as well as any QAR at any time point in the future. We show that these methods can predict the size and inter-arrival time of cyber hacking breaches by running coverage tests. The proposed approaches allow to model a separate stochastic process for each significance level and therefore provide more flexibility compared to previously proposed techniques. We provide a fully reproducible code used for conducting the experiments.
We have witnessed an unprecedented public health crisis caused by the new coronavirus disease (COVID-19), which has severely affected medical institutions, our common lives, and social-economic activities. This crisis also reveals the brittleness of existing medical services, such as over-centralization of medical resources, the hysteresis of medical services digitalization, and weak security and privacy protection of medical data. The integration of the Internet of Medical Things (IoMT) and blockchain is expected to be a panacea to COVID-19 attributed to the ubiquitous presence and the perception of IoMT as well as the enhanced security and immutability of the blockchain. However, the synergy of IoMT and blockchain is also faced with challenges in privacy, latency, and context-absence. The emerging edge intelligence technologies bring opportunities to tackle these issues. In this article, we present a blockchain-empowered edge intelligence for IoMT in addressing the COVID-19 crisis. We first review IoMT, edge intelligence, and blockchain in addressing the COVID-19 pandemic. We then present an architecture of blockchain-empowered edge intelligence for IoMT after discussing the opportunities of integrating blockchain and edge intelligence. We next offer solutions to COVID-19 brought by blockchain-empowered edge intelligence from 1) monitoring and tracing COVID-19 pandemic origin, 2) traceable supply chain of injectable medicines and COVID-19 vaccines, and 3) telemedicine and remote healthcare services. Moreover, we also discuss the challenges and open issues in blockchain-empowered edge intelligence.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا