ﻻ يوجد ملخص باللغة العربية
We study fractional boundary charges (FBCs) for two classes of strongly interacting systems. First, we study strongly interacting nanowires subjected to a periodic potential with a period that is a rational fraction of the Fermi wavelength. For sufficiently strong interactions, the periodic potential leads to the opening of a charge density wave gap at the Fermi level. The FBC then depends linearly on the phase offset of the potential with a quantized slope determined by the period. Furthermore, different possible values for the FBC at a fixed phase offset label different degenerate ground states of the system that cannot be connected adiabatically. Next, we turn to the fractional quantum Hall effect (FQHE) at odd filling factors $ u=1/(2l+1)$, where $l$ is an integer. For a Corbino disk threaded by an external flux, we find that the FBC depends linearly on the flux with a quantized slope that is determined by the filling factor. Again, the FBC has $2l+1$ different branches that cannot be connected adiabatically, reflecting the $(2l+1)$-fold degeneracy of the ground state. These results allow for several promising and strikingly simple ways to probe strongly interacting phases via boundary charge measurements.
We study single-channel continuum models of one-dimensional insulators induced by periodic potential modulations which are either terminated by a hard wall (the boundary model) or feature a single region of dislocations and/or impurity potentials bre
The boundary charge that accumulates at the edge of a one-dimensional single-channel insulator is known to possess the universal property, that its change under a lattice shift towards the edge by one site is given by the sum of the average bulk elec
We use exact techniques to demonstrate theoretically the pumping of fractional charges in a single-level non-interacting quantum dot, when the dot-reservoir coupling is adiabatically driven from weak to strong coupling. The pumped charge averaged ove
We study one dimensional clean systems with few channels and strong electron-electron interactions. We find that in several circumstances, even when time reversal symmetry holds, they may lead to two terminal fractional quantized conductance and frac
Resistance oscillations in electronic Fabry-Perot interferometers near fractional quantum Hall (FQH) filling factors 1/3, 2/3, 4/3 and 5/3 in the constrictions are compared to corresponding oscillations near integer quantum Hall (IQH) filling factors