ﻻ يوجد ملخص باللغة العربية
The boundary charge that accumulates at the edge of a one-dimensional single-channel insulator is known to possess the universal property, that its change under a lattice shift towards the edge by one site is given by the sum of the average bulk electronic density and a topologically invariant contribution, restricted to the values $0$ and $-1$ [Phys. Rev. B 101, 165304 (2020)]. This quantized contribution is associated with particle-hole duality, ensures charge conservation and fixes the mod(1) ambiguity appearing in the Modern Theory of Polarization. In the present work we generalize the above-mentioned single-channel results to the multichannel case by employing the technique of boundary Greens functions. We show that the topological invariant associated with the change in boundary charge under a lattice shift in multichannel models can be expressed as a winding number of a certain combination of components of bulk Greens functions as function of the complex frequency, as it encircles the section of the energy axis that corresponds to the occupied part of the spectrum. We observe that this winding number is restricted to values ranging from $-N_c$ to $0$, where $N_c$ is the number of channels (orbitals) per site. Furthermore, we consider translationally invariant one-dimensional multichannel models with an impurity and introduce topological indices which correspond to the quantized charge that accumulates around said impurity. These invariants are again given in terms of winding numbers of combinations of components of bulk Greens functions. Through this construction we provide a rigorous mathematical proof of the so called nearsightedness principle formulated by W. Kohn [Phys. Rev. Lett. 76, 3168 (1996)] for noninteracting multichannel lattice models.
We study single-channel continuum models of one-dimensional insulators induced by periodic potential modulations which are either terminated by a hard wall (the boundary model) or feature a single region of dislocations and/or impurity potentials bre
We study fractional boundary charges (FBCs) for two classes of strongly interacting systems. First, we study strongly interacting nanowires subjected to a periodic potential with a period that is a rational fraction of the Fermi wavelength. For suffi
We measure the transmission through asymmetric and reflection-symmetric chaotic microwave cavities in dependence of the number of attached wave guides. Ferrite cylinders are placed inside the cavities to break time-reversal symmetry. The phase-breaki
We demonstrate that a large class of one-dimensional quantum and classical exchange models can be described by the same type of graphs, namely Cayley graphs of the permutation group. Their well-studied spectral properties allow us to derive crucial i
Emerging new concepts, such as magnetic charge dynamics in two-dimensional magnetic material, can provide novel mechanism for spin based electrical transport at macroscopic length. In artificial spin ice of single domain elements, magnetic charges re