ترغب بنشر مسار تعليمي؟ اضغط هنا

Adiabatic almost-topological pumping of fractional charges in non-interacting quantum dots

158   0   0.0 ( 0 )
 نشر من قبل Robert Whitney S.
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use exact techniques to demonstrate theoretically the pumping of fractional charges in a single-level non-interacting quantum dot, when the dot-reservoir coupling is adiabatically driven from weak to strong coupling. The pumped charge averaged over many cycles is quantized at a fraction of an electron per cycle, determined by the ratio of Lamb shift to level-broadening; this ratio is imposed by the reservoir band-structure. For uniform density of states, half an electron is pumped per cycle. We call this adiabatic almost-topological pumping, because the pumpings Berry curvature is sharply peaked in the parameter space. Hence, so long as the pumping contour does not touch the peak, the pumped charge depends only on how many times the contour winds around the peak (up to exponentially small corrections). However, the topology does not protect against non-adiabatic corrections, which grow linearly with pump speed. In one limit the peak becomes a delta-function, so the adiabatic pumping of fractional charges becomes entirely topological. Our results show that quantization of the adiabatic pumped charge at a fraction of an electron does not require fractional particles or other exotic physics.



قيم البحث

اقرأ أيضاً

We study non-adiabatic two-parameter charge and spin pumping through a single-level quantum dot with Coulomb interaction. For the limit of weak tunnel coupling and in the regime of pumping frequencies up to the tunneling rates, $Omega lesssim Gamma/h bar$, we perform an exact resummation of contributions of all orders in the pumping frequency. As striking non-adiabatic signatures, we find frequency-dependent phase shifts in the charge and spin currents, which allow for an effective single-parameter pumping as well as pure spin without charge currents.
78 - Timo Hyart , Jose L. Lado 2021
Quantum dots are one of the paradigmatic solid-state systems for quantum engineering, providing an outstanding tunability to explore fundamental quantum phenomena. Here we show that non-Hermitian many-body topological modes can be realized in a quant um dot chain by utilizing a gate-tunable modulation of dissipation, and they emerge purely because of the non-Hermiticity. By exactly solving the non-Hermitian interacting description both with exact diagonalization and tensor-networks, we demonstrate that these topological modes are robust even in the presence strong interactions, leading to a strongly correlated topological many-particle state. Our results put forward quantum dot arrays as a platform for engineering non-Hermitian many-body topological modes, and highlight the resilience of non-Hermitian topology to electronic interactions.
We investigate adiabatic quantum pumping of Dirac fermions on the surface of a strong 3D topological insulator. Two different geometries are studied in detail, a normal metal -- ferromagnetic -- normal metal (NFN) junction and a ferromagnetic -- norm al metal -- ferromagnetic (FNF) junction. Using a scattering matrix approach, we first calculate the tunneling conductance and then the adiabatically pumped current using different pumping mechanisms for both types of junctions. We explain the oscillatory behavior of the conductance by studying the condition for resonant transmission in the junctions and find that each time a new resonant mode appears in the transport window, the pumped current diverges. We also predict an experimentally distinguishable difference between the pumped current and the rectified current.
Controlled charge pumping in an AlGaAs/GaAs gated nanowire by single-parameter modulation is studied experimentally and theoretically. Transfer of integral multiples of the elementary charge per modulation cycle is clearly demonstrated. A simple theo retical model shows that such a quantized current can be generated via loading and unloading of a dynamic quasi-bound state. It demonstrates that non-adiabatic blockade of unwanted tunnel events can obliterate the requirement of having at least two phase-shifted periodic signals to realize quantized pumping. The simple configuration without multiple pumping signals might find wide application in metrological experiments and quantum electronics.
We investigate adiabatic quantum pumping of chiral Majorana states in a system composed of two Mach--Zehnder type interferometers coupled via a quantum point contact. The pumped current is generated by periodic modulation of the phases accumulated by traveling around each interferometer. Using scattering matrix formalism we show that the pumped current reveals a definite signature of the chiral nature of the Majorana states involved in transport in this geometry. Furthermore, by tuning the coupling between the two interferometers the pump can operate in a regime where finite pumped current and zero two-terminal conductance is expected.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا