ترغب بنشر مسار تعليمي؟ اضغط هنا

Determining the Proximity Effect Induced Magnetic Moment in Graphene by Polarised Neutron Reflectivity and X-ray Magnetic Circular Dichroism

63   0   0.0 ( 0 )
 نشر من قبل Razan Omar M Aboljadayel
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the magnitude of the induced magnetic moment in CVD-grown epitaxial and rotated-domain graphene as a result of the proximity effect in the vicinity of the ferromagnetic substrates Co and Ni, using polarised neutron reflectivity (PNR). Although rotated-domain graphene is known to interact weakly with the ferromagnetic underlayer in comparison with the epitaxial graphene, the PNR results indicate an induced magnetic moment of $sim$ 0.57 $mu_textrm{B}$/C atom at 10 K for both structures. The origin of the induced magnetic moment is found to be due to the opening of the graphenes Dirac cone as a result of the strong C $p_z-3d$ hybridisation, which was confirmed by additional PNR measurements using a non-magnetic Ni$_9$Mo$_1$ and Cu substrates. We validated our PNR fitting models using the Bayesian uncertainty analysis and corroborated the results by X-ray magnetic circular dichroism measurements.



قيم البحث

اقرأ أيضاً

The spin polarization of Pt in Pt/NiFe2O4 and Pt/Fe bilayers is studied by interface-sensitive x-ray resonant magnetic reflectivity to investigate static magnetic proximity effects. The asymmetry ratio of the reflectivity was measured at the Pt L3 ab sorption edge using circular polarized x-rays for opposite directions of the magnetization at room temperature. The results of the 2% asymmetry ratio for Pt/Fe bilayers are independent of the Pt thickness between 1.8 and 20 nm. By comparison with ab initio calculations, the maximum magnetic moment per spin polarized Pt atom at the interface is determined to be $(0.6pm0.1),mu_{B}$ for Pt/Fe. For Pt/NiFe2O4 the asymmetry ratio drops below the sensitivity limit of $0.02,mu_{B}$ per Pt atom. Therefore, we conclude, that the longitudinal spin Seebeck effect recently observed in Pt/NiFe2O4 is not influenced by a proximity induced anomalous Nernst effect.
We demonstrate the existence of Giant proximity magnetoresistance (PMR) effect in a graphene spin valve where spin polarization is induced by a nearby magnetic insulator. PMR calculations were performed for yttrium iron garnet (YIG), cobalt ferrite ( CFO), and two europium chalcogenides EuO and EuS. We find a significant PMR (up to 100%) values defined as a relative change of graphene conductance with respect to parallel and antiparallel alignment of two proximity induced magnetic regions within graphene. Namely, for high Curie temperature (Tc) CFO and YIG insulators which are particularly important for applications, we obtain 22% and 77% at room temperature, respectively. For low Tc chalcogenides, EuO and EuS, the PMR is 100% in both cases. Furthermore, the PMR is robust with respect to system dimensions and edge type termination. Our findings show that it is possible to induce spin polarized currents in graphene with no direct injection through magnetic materials.
We have investigated the spin and orbital magnetic moments of Fe in FePt nanoparticles in the $L$1$_{0}$-ordered phase coated with SiO$_{2}$ by x-ray absorption spectroscopy (XAS) and x-ray magnetic circular dichroism (XMCD) measurements at the Fe $L _{rm 2,3}$ absorption edges. Using XMCD sum rules, we evaluated the ratio of the orbital magnetic moment ($M_{rm orb}$) to the spin magnetic moment ($M_{rm spin}$) of Fe to be $M_{rm orb}/M_{rm spin}$ = 0.08. This $M_{rm orb}/M_{rm spin}$ value is comparable to the value (0.09) obtained for FePt nanoparticles prepared by gas phase condensation, and is larger than the values ($sim$0.05) obtained for FePt thin films, indicating a high degree of $L$1$_{0}$ order. The hysteretic behavior of the FePt component of the magnetization was measured by XMCD. The magnetic coercivity ($H_{rm c}$) was found to be as large as 1.8 T at room temperature, $sim$3 times larger than the thin film value and $sim$50 times larger than that of the gas phase condensed nanoparticles. The hysteresis curve is well explained by the Stoner-Wohlfarth model for non-interacting single-domain nanoparticles with the $H_{rm c}$ distributed from 1 T to 5 T.
We present x-ray resonant magnetic reflectivity (XRMR) as a very sensitive tool to detect proximity induced interface spin polarization in Pt/Fe, Pt/Ni$_{33}$Fe$_{67}$, Pt/Ni$_{81}$Fe$_{19}$ (permalloy), and Pt/Ni bilayers. We demonstrate that a deta iled analysis of the reflected x-ray intensity gives insight in the spatial distribution of the spin polarization of a non-magnetic metal across the interface to a ferromagnetic layer. The evaluation of the experimental results with simulations based on optical data from ab initio calculations provides the induced magnetic moment per Pt atom in the spin polarized volume adjacent to the ferromagnet. We find the largest spin polarization in Pt/Fe and a much smaller magnetic proximity effect in Pt/Ni. Additional XRMR experiments with varying photon energy are in good agreement with the theoretical predictions for the energy dependence of the magnetooptic parameters and allow identifying the optical dispersion $delta$ and absorption $beta$ across the Pt L3-absorption edge.
251 - M. Taupin , J.-P. Brison , D. Aoki 2015
The ferromagnetic superconductor UCoGe has been investigated by high field X-ray magnetic circular dichroism (XMCD) at the U-M$_{4,5}$ and Co/Ge-K edges. The analysis of the branching ratio and XMCD at the U-M$_{4,5}$ edges reveals that the U-5$f$ el ectrons count is close to 3. The orbital ($sim0.70,mu_B$) and spin ($sim-0.30,mu_B$) moments of U at 2.1K and 17T (H//c) have been determined. Their ratio ($sim-2.3$) suggests a significant delocalization of the 5$f$ electron states. The similar field dependences of the local U/Co and the macroscopic magnetization indicate that the Co moment is induced by the U moment. The XMCD at the Co/Ge-K edges reveal the presence of small Co-4$p$ and Ge-4$p$ orbital moments parallel to the macroscopic magnetization. In addition, the Co-3$d$ moment is estimated to be at most of the order of 0.1$mu_B$ at 17T. Our results rule out the possibility of an unusual polarisability of the U and Co moments as well as their antiparallel coupling. We conclude that the magnetism which mediates the superconductivity in UCoGe is driven by U.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا