ترغب بنشر مسار تعليمي؟ اضغط هنا

Static magnetic proximity effect in Pt/NiFe2O4 and Pt/Fe bilayers investigated by x-ray resonant magnetic reflectivity

372   0   0.0 ( 0 )
 نشر من قبل Timo Kuschel
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The spin polarization of Pt in Pt/NiFe2O4 and Pt/Fe bilayers is studied by interface-sensitive x-ray resonant magnetic reflectivity to investigate static magnetic proximity effects. The asymmetry ratio of the reflectivity was measured at the Pt L3 absorption edge using circular polarized x-rays for opposite directions of the magnetization at room temperature. The results of the 2% asymmetry ratio for Pt/Fe bilayers are independent of the Pt thickness between 1.8 and 20 nm. By comparison with ab initio calculations, the maximum magnetic moment per spin polarized Pt atom at the interface is determined to be $(0.6pm0.1),mu_{B}$ for Pt/Fe. For Pt/NiFe2O4 the asymmetry ratio drops below the sensitivity limit of $0.02,mu_{B}$ per Pt atom. Therefore, we conclude, that the longitudinal spin Seebeck effect recently observed in Pt/NiFe2O4 is not influenced by a proximity induced anomalous Nernst effect.



قيم البحث

اقرأ أيضاً

We present x-ray resonant magnetic reflectivity (XRMR) as a very sensitive tool to detect proximity induced interface spin polarization in Pt/Fe, Pt/Ni$_{33}$Fe$_{67}$, Pt/Ni$_{81}$Fe$_{19}$ (permalloy), and Pt/Ni bilayers. We demonstrate that a deta iled analysis of the reflected x-ray intensity gives insight in the spatial distribution of the spin polarization of a non-magnetic metal across the interface to a ferromagnetic layer. The evaluation of the experimental results with simulations based on optical data from ab initio calculations provides the induced magnetic moment per Pt atom in the spin polarized volume adjacent to the ferromagnet. We find the largest spin polarization in Pt/Fe and a much smaller magnetic proximity effect in Pt/Ni. Additional XRMR experiments with varying photon energy are in good agreement with the theoretical predictions for the energy dependence of the magnetooptic parameters and allow identifying the optical dispersion $delta$ and absorption $beta$ across the Pt L3-absorption edge.
The longitudinal spin Seebeck effect is detected in sputter-deposited NiFe2O4 films using Pt as a spin detector and compared to previously investigated NiFe2O4 films prepared by chemical vapor deposition. Anomalous Nernst effects induced by the magne tic proximity effect in Pt can be excluded for the sputter-deposited NiFe2O4 films down to a certain limit, since x-ray resonant magnetic reflectivity measurements show no magnetic response down to a limit of 0.04 {mu}B per Pt atom comparable to the case of the chemicallydeposited NiFe2O4 films. These differently prepared films have various thicknesses. Therefore, we further studied Pt/Fe reference samples with various Fe thicknesses and could confirm that the magnetic proximity effect is only induced by the interface properties of the magnetic material.
We observe the magnetic proximity effect (MPE) in Pt/CoFe2O4 bilayers grown by molecular beam epitaxy. This is revealed through angle-dependent magnetoresistance measurements at 5 K, which isolate the contributions of induced ferromagnetism (i.e. ani sotropic magnetoresistance) and spin Hall effect (i.e. spin Hall magnetoresistance) in the Pt layer. The observation of induced ferromagnetism in Pt via AMR is further supported by density functional theory calculations and various control measurements including insertion of a Cu spacer layer to suppress the induced ferromagnetism. In addition, anomalous Hall effect measurements show an out-of-plane magnetic hysteresis loop of the induced ferromagnetic phase with larger coercivity and larger remanence than the bulk CoFe2O4. By demonstrating MPE in Pt/CoFe2O4, these results establish the spinel ferrite family as a promising material for MPE and spin manipulation via proximity exchange fields.
The magnetic state of heavy metal Pt thin films in proximity to the ferrimagnetic insulator Y$_{3}$Fe$_{5}$O$_{12}$ has been investigated systematically by means of x-ray magnetic circular dichroism and x-ray resonant magnetic reflectivity measuremen ts combined with angle-dependent magnetotransport studies. To reveal intermixing effects as the possible cause for induced magnetic moments in Pt, we compare thin film heterostructures with different order of the layer stacking and different interface properties. For standard Pt layers on Y$_{3}$Fe$_{5}$O$_{12}$ thin films, we do not detect any static magnetic polarization in Pt. These samples show an angle-dependent magnetoresistance behavior, which is consistent with the established spin Hall magnetoresistance. In contrast, for the inverted layer sequence, Y$_{3}$Fe$_{5}$O$_{12}$ thin films grown on Pt layers, Pt displays a finite induced magnetic moment comparable to that of all-metallic Pt/Fe bilayers. This magnetic moment is found to originate from finite intermixing at the Y$_{3}$Fe$_{5}$O$_{12}$/Pt interface. As a consequence, we found a complex angle-dependent magnetoresistance indicating a superposition of the spin Hall and the anisotropic magnetoresistance in these type of samples. Both effects can be disentangled from each other due to their different angle dependence and their characteristic temperature evolution.
We report the magnitude of the induced magnetic moment in CVD-grown epitaxial and rotated-domain graphene as a result of the proximity effect in the vicinity of the ferromagnetic substrates Co and Ni, using polarised neutron reflectivity (PNR). Altho ugh rotated-domain graphene is known to interact weakly with the ferromagnetic underlayer in comparison with the epitaxial graphene, the PNR results indicate an induced magnetic moment of $sim$ 0.57 $mu_textrm{B}$/C atom at 10 K for both structures. The origin of the induced magnetic moment is found to be due to the opening of the graphenes Dirac cone as a result of the strong C $p_z-3d$ hybridisation, which was confirmed by additional PNR measurements using a non-magnetic Ni$_9$Mo$_1$ and Cu substrates. We validated our PNR fitting models using the Bayesian uncertainty analysis and corroborated the results by X-ray magnetic circular dichroism measurements.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا