ﻻ يوجد ملخص باللغة العربية
We give the beginnings of the development of a theory of what we call R-coactions of a locally compact group on a $C^*$-algebra. These are the coactions taking values in the maximal tensor product, as originally proposed by Raeburn. We show that the theory has some gaps as compared to the more familiar theory of standard coactions. However, we indicate how we needed to develop some of the basic properties of R-coactions as a tool in our program involving the use of coaction functors in the study of the Baum-Connes conjecture.
The residual finite-dimensionality of a $mathrm{C}^*$-algebra is known to be encoded in a topological property of its space of representations, stating that finite-dimensional representations should be dense therein. We extend this paradigm to genera
A coaction d of a locally compact group G on a C*-algebra A is maximal if a certain natural map from A times_d G times_{d hat} G onto A otimes K(L^2(G)) is an isomorphism. All dual coactions on full crossed products by group actions are maximal; a di
In this short note we prove that the reduced group C*-algebra of a locally compact group admits a non-zero trace if and only if the amenable radical of the group is open. This completely answers a question raised by Forrest, Spronk and Wiersma.
A Banach involutive algebra is called a Krein C*-algebra if there is a fundamental symmetry (an involutive automorphism of period 2) such that the C*-property is satisfied when the original involution is replaced with the new one obtained by composin
We extend the usual theory of universal C*-algebras from generators and relations in order to allow some relations to be described using the strong operator topology. In particular, we can allow some infinite sum relations. We prove a universal prope