ترغب بنشر مسار تعليمي؟ اضغط هنا

Long range correlations and slow time scales in a boundary driven granular model

267   0   0.0 ( 0 )
 نشر من قبل Andrea Plati
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider a velocity field with linear viscous interactions defined on a one dimensional lattice. Brownian baths with different parameters can be coupled to the boundary sites and to the bulk sites, determining different kinds of non-equilibrium steady states or free-cooling dynamics. Analytical results for spatial and temporal correlations are provided by analytical diagonalisation of the systems equations in the infinite size limit. We demonstrate that spatial correlations are scale-free and time-scales become exceedingly long when the system is driven only at the boundaries. On the contrary, in the case a bath is coupled to the bulk sites too, an exponential correlation decay is found with a finite characteristic length. This is also true in the free cooling regime, but in this case the correlation length grows diffusively in time. We discuss the crucial role of boundary driving for long-range correlations and slow time-scales, proposing an analogy between this simplified dynamical model and dense vibro-fluidized granular materials. Several generalizations and connections with the statistical physics of active matter are also suggested.



قيم البحث

اقرأ أيضاً

267 - Andrea Fiege , Timo Aspelmeier , 2011
We study the velocity autocorrelation function (VACF) of a driven granular fluid in the stationary state in 3 dimensions. As the critical volume fraction of the glass transition in the corresponding elastic system is approached, we observe pronounced cage effects in the VACF as well as a strong decrease of the diffusion constant. At moderate densities the VACF is shown to decay algebraically in time (t^{-3/2}) like in a molecular fluid, as long as the driving conserves momentum locally.
An initially homogeneous freely evolving fluid of inelastic hard spheres develops inhomogeneities in the flow field (vortices) and in the density field (clusters), driven by unstable fluctuations. Their spatial correlations, as measured in molecular dynamics simulations, exhibit long range correlations; the mean vortex diameter grows as the square root of time; there occur transitions to macroscopic shearing states, etc. The Cahn--Hilliard theory of spinodal decomposition offers a qualitative understanding and quantitative estimates of the observed phenomena. When intrinsic length scales are of the order of the system size, effects of physical boundaries and periodic boundaries (finite size effects in simulations) are important.
Modeling collective motion in non-conservative systems, such as granular materials, is difficult since a general microscopic-to-macroscopic approach is not available: there is no Hamiltonian, no known stationary densities in phase space, not a known small set of relevant variables. Phenomenological coarse-grained models are a good alternative, provided that one has identified a few slow observables and collected a sufficient amount of data for their dynamics. Here we study the case of a vibrofluidized dense granular material. The experimental study of a tracer, dispersed into the media, showed the evidence of many time scales: fast ballistic, intermediate caged, slow superdiffusive, very slow diffusive. A numerical investigation has demonstrated that tracers superdiffusion is related to slow rotating drifts of the granular medium. Here we offer a deeper insight into the slow scales of the granular medium, and propose a new phenomenological model for such a secular dynamics. Based upon the model for the granular medium, we also introduce a model for the tracer (fast and slow) dynamics, which consists in a stochastic system of equations for three coupled variables, and is therefore more refined and successful than previous models.
82 - Pierre Gaspard 2019
A nonequilibrium fluctuation theorem is established for a colloidal particle driven by an external force within the hydrodynamic theory of Brownian motion, describing hydrodynamic memory effects such as the t^(-3/2) power-law decay of the velocity au tocorrelation function. The generalized Langevin equation is obtained for the general case of slip boundary conditions between the particle and the fluid. The Gaussian probability distributions for the particle to evolve in position-velocity space are deduced. It is proved that the joint probability distributions of forward and time-reversed paths have a ratio depending only on the work performed by the external force and the fluid temperature, in spite of the nonMarkovian character of the generalized Langevin process.
We study experimentally the particle velocity fluctuations in an electrostatically driven dilute granular gas. The experimentally obtained velocity distribution functions have strong deviations from Maxwellian form in a wide range of parameters. We h ave found that the tails of the distribution functions are consistent with a stretched exponential law with typical exponents of the order 3/2. Molecular dynamic simulations shows qualitative agreement with experimental data. Our results suggest that this non-Gaussian behavior is typical for most inelastic gases with both short and long range interactions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا