ترغب بنشر مسار تعليمي؟ اضغط هنا

Slow time scales in a dense vibrofluidized granular material

110   0   0.0 ( 0 )
 نشر من قبل Andrea Plati
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Modeling collective motion in non-conservative systems, such as granular materials, is difficult since a general microscopic-to-macroscopic approach is not available: there is no Hamiltonian, no known stationary densities in phase space, not a known small set of relevant variables. Phenomenological coarse-grained models are a good alternative, provided that one has identified a few slow observables and collected a sufficient amount of data for their dynamics. Here we study the case of a vibrofluidized dense granular material. The experimental study of a tracer, dispersed into the media, showed the evidence of many time scales: fast ballistic, intermediate caged, slow superdiffusive, very slow diffusive. A numerical investigation has demonstrated that tracers superdiffusion is related to slow rotating drifts of the granular medium. Here we offer a deeper insight into the slow scales of the granular medium, and propose a new phenomenological model for such a secular dynamics. Based upon the model for the granular medium, we also introduce a model for the tracer (fast and slow) dynamics, which consists in a stochastic system of equations for three coupled variables, and is therefore more refined and successful than previous models.



قيم البحث

اقرأ أيضاً

The kinematic flow pattern in slow deformation of a model dense granular medium is studied at high resolution using emph{in situ} imaging, coupled with particle tracking. The deformation configuration is indentation by a flat punch under macroscopic plane-strain conditions. Using a general analysis method, velocity gradients and deformation fields are obtained from the disordered grain arrangement, enabling flow characteristics to be quantified. The key observations are the formation of a stagnation zone, as in dilute granular flow past obstacles; occurrence of vortices in the flow immediately underneath the punch; and formation of distinct shear bands adjoining the stagnation zone. The transient and steady state stagnation zone geometry, as well as the strength of the vortices and strain rates in the shear bands, are obtained from the experimental data. All of these results are well-reproduced in exact-scale Non-Smooth Contact Dynamics (NSCD) simulations. Full 3D numerical particle positions from the simulations allow extraction of flow features that are extremely difficult to obtain from experiments. Three examples of these, namely material free surface evolution, deformation of a grain column below the punch and resolution of velocities inside the primary shear band, are highlighted. The variety of flow features observed in this model problem also illustrates the difficulty involved in formulating a complete micromechanical analytical description of the deformation.
132 - W. Till Kranz 2013
I derive a mode-coupling theory for the velocity autocorrelation function, psi(t), in a fluid of randomly driven inelastic hard spheres far from equilibrium. With this, I confirm a conjecture from simulations that the velocity autocorrelation functio n decays algebraically, psi(t) ~ t^{-3/2}, if momentum is conserved. I show that the slow decay is due to the coupling to transverse currents.
We consider a velocity field with linear viscous interactions defined on a one dimensional lattice. Brownian baths with different parameters can be coupled to the boundary sites and to the bulk sites, determining different kinds of non-equilibrium st eady states or free-cooling dynamics. Analytical results for spatial and temporal correlations are provided by analytical diagonalisation of the systems equations in the infinite size limit. We demonstrate that spatial correlations are scale-free and time-scales become exceedingly long when the system is driven only at the boundaries. On the contrary, in the case a bath is coupled to the bulk sites too, an exponential correlation decay is found with a finite characteristic length. This is also true in the free cooling regime, but in this case the correlation length grows diffusively in time. We discuss the crucial role of boundary driving for long-range correlations and slow time-scales, proposing an analogy between this simplified dynamical model and dense vibro-fluidized granular materials. Several generalizations and connections with the statistical physics of active matter are also suggested.
134 - Daniel M. Mueth 2001
Experimental measurements of particle dynamics on the lower surface of a 3D Couette cell containing monodisperse spheres are reported. The average radial density and velocity profiles are similar to those previously measured within the bulk and on th e lower surface of the 3D cell filled with mustard seeds. Observations of the evolution of particle velocities over time reveal distinct motion events, intervals where previously stationary particles move for a short duration before jamming again. The cross-correlation between the velocities of two particles at a given distance $r$ from the moving wall reveals a characteristic lengthscale over which the particles are correlated. The autocorrelation of a single particles velocity reveals a characteristic timescale $tau$ which decreases with distance from the inner moving wall. This may be attributed to the increasing rarity at which the discrete motion events occur and the reduced duration of those events at large $r$. The relationship between the RMS azimuthal velocity fluctuations, $delta v_theta(r)$, and average shear rate, $dotgamma(r)$, was found to be $delta v_theta propto dotgamma^alpha$ with $alpha = 0.52 pm 0.04$. These observations are compared with other recent experiments and with the modified hydrodynamic model recently introduced by Bocquet et al.
The spontaneous symmetry breaking taking place in the direction perpendicular to the energy flux in a dilute vibrofluidized granular system is investigated, using both a hydrodynamic description and simulation methods. The latter include molecular dy namics and direct Monte Carlo simulation of the Boltzmann equation. A marginal stability analysis of the hydrodynamic equations, carried out in the WKB approximation, is shown to be in good agreement with the simulation results. The shape of the hydrodynamic profiles beyond the bifurcation is discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا