ﻻ يوجد ملخص باللغة العربية
A nonequilibrium fluctuation theorem is established for a colloidal particle driven by an external force within the hydrodynamic theory of Brownian motion, describing hydrodynamic memory effects such as the t^(-3/2) power-law decay of the velocity autocorrelation function. The generalized Langevin equation is obtained for the general case of slip boundary conditions between the particle and the fluid. The Gaussian probability distributions for the particle to evolve in position-velocity space are deduced. It is proved that the joint probability distributions of forward and time-reversed paths have a ratio depending only on the work performed by the external force and the fluid temperature, in spite of the nonMarkovian character of the generalized Langevin process.
Brownian motion has played important roles in many different fields of science since its origin was first explained by Albert Einstein in 1905. Einsteins theory of Brownian motion, however, is only applicable at long time scales. At short time scales
We provide an analytic solution to the first-passage time (FPT) problem of a piecewise-smooth stochastic model, namely Brownian motion with dry friction, using two different but closely related approaches which are based on eigenfunction decompositio
We consider a velocity field with linear viscous interactions defined on a one dimensional lattice. Brownian baths with different parameters can be coupled to the boundary sites and to the bulk sites, determining different kinds of non-equilibrium st
A combined dynamics consisting of Brownian motion and Levy flights is exhibited by a variety of biological systems performing search processes. Assessing the search reliability of ever locating the target and the search efficiency of doing so economi
We present the analysis of the first passage time problem on a finite interval for the generalized Wiener process that is driven by Levy stable noises. The complexity of the first passage time statistics (mean first passage time, cumulative first pas