ترغب بنشر مسار تعليمي؟ اضغط هنا

Shadow cast and center of mass energy in a charged Gauss-Bonnet-AdS black hole

86   0   0.0 ( 0 )
 نشر من قبل Saeed Ullah Khan
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This work is devoted to the exploration of shadow cast and center of mass energy in the background of a 4-dimensional charged Gauss-Bonnet AdS black hole. On investigating particle dynamics, we have examined BHs metric function. Whereas, with the help of null geodesics, we pursue to calculate the celestial coordinates and the shadow radius of the black hole. We have made use of the hawking temperature to study the energy emission rate. Moreover, we have explored the center of mass energy and discussed its characteristics under the influence of spacetime parameters. For a better understanding, we graphically represent all of our main findings. The acquired result shows that both charge and AdS radius ($l$) decrease the shadow radius, while the Gauss-Bonnet coupling parameter $alpha$ increases the shadow radius in AdS spacetime. On the other hand, both $Q$ and $alpha$ result in diminishing the shadow radius in asymptotically flat spacetime. Finally, we investigate the energy emission rate and center of mass energy under the influence of $Q$ and $alpha$.



قيم البحث

اقرأ أيضاً

The existence of quintessential dark energy around a black hole has considerable consequences on its spacetime geometry. Hence, in this article, we explore its effect on horizons and the silhouette generated by a Kerr-Newman black hole in quintessent ial dark energy. Moreover, to analyze the deflection angle of light, we utilize the Gauss-Bonnet theorem. The obtained result demonstrates that, due to the dragging effect, the black hole spin elongates its shadow in the direction of the rotational axis, while increases the deflection angle. On the other hand, the black hole charge diminishing its shadow, as well as the angle of lights deflection. Besides, both spin and charge significantly increase the distortion effect in the black holes shadow. The quintessence parameter gamma, increases the shadow radius, while decreases the distortion effect at higher values of charge and spin parameters.
In this paper, we investigate the photon sphere, shadow radius and quasinormal modes of a four-dimensional charged Einstein-Gauss-Bonnet black hole. The perturbation of a massless scalar field in the black holes background is adopted. The quasinormal modes are gotten by the $6th$ order WKB approximation approach and shadow radius, respectively. When the value of the Gauss-Bonnet coupling constant increase, the values of the real parts of the quasinormal modes increase and those of the imaginary parts decrease. The coincidence degrees of quasinormal modes derived by the two approaches increases with the increase of the values of the Gauss-Bonnet coupling constant and multiple number. It shows the correspondence between the shadow and test field in the four-dimensional Einstein-Gauss-Bonnet-Maxwell gravity. The radii of the photon sphere and shadow increase with the decrease of the Gauss-Bonnet coupling constant.
Understanding the dynamic process of the thermodynamic phase transition can provide the deep insight into the black hole microscopic properties and structures. We in this paper study the dynamic properties of the stable small-large black hole phase t ransition for the five-dimensional neutral Gauss-Bonnet AdS black hole. Firstly, by using the first law of black holes, we prove that the extremal points of the free energy on the landscape denote the real black hole solutions satisfying the field equations. The local maximal and minimal points correspond to local unstable and stable black hole states, respectively. Especially, on the free energy landscape, the wells of the coexistence small and large black holes have the same depth. Then we investigate the probability evolution governed by the Fokker-Planck equation. Due to the thermal fluctuation, we find that the small (large) black hole state can transit to the large (small) black hole state. Furthermore, the first passage time is calculated. For each temperature, a single peak is presented, which suggests that there is a considerable fraction of the first passage events taking place at short time. And the higher the temperature is, the faster decrease of the probability is. These results will uncover some intriguing dynamic properties of the stable small-large black hole phase transition in modified gravity.
107 - M. Bousder , M. Bennai 2021
We study the charge of the 4D-Einstein-Gauss-Bonnet black hole by a negative charge and a positive charge of a particle-antiparticle pair on the horizons r- and r+, respectively. We show that there are two types of the Schwarzschild black hole. We sh ow also that the Einstein-Gauss-Bonnet black hole charge has quantified values. We obtain the Hawking-Bekenstein formula with two logarithmic corrections, the second correction depends on the cosmological constant and the black hole charge. Finally, we study the thermodynamics of the EGB-AdS black hole.
Spontaneous scalarization is a gravitational phenomenon in which deviations from general relativity arise once a certain threshold in curvature is exceeded, while being entirely absent below that threshold. For black holes, scalarization is known to be triggered by a coupling between a scalar and the Gauss-Bonnet invariant. A coupling with the Ricci scalar, which can trigger scalarization in neutron stars, is instead known to not contribute to the onset of black hole scalarization, and has so far been largely ignored in the literature when studying scalarized black holes. In this paper, we study the combined effect of both these couplings on black hole scalarization. We show that the Ricci coupling plays a significant role in the properties of scalarized solutions and their domain of existence. This work is an important step in the construction of scalarization models that evade binary pulsar constraints and have general relativity as a cosmological late-time attractor, while still predicting deviations from general relativity in black hole observations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا