ﻻ يوجد ملخص باللغة العربية
Understanding the dynamic process of the thermodynamic phase transition can provide the deep insight into the black hole microscopic properties and structures. We in this paper study the dynamic properties of the stable small-large black hole phase transition for the five-dimensional neutral Gauss-Bonnet AdS black hole. Firstly, by using the first law of black holes, we prove that the extremal points of the free energy on the landscape denote the real black hole solutions satisfying the field equations. The local maximal and minimal points correspond to local unstable and stable black hole states, respectively. Especially, on the free energy landscape, the wells of the coexistence small and large black holes have the same depth. Then we investigate the probability evolution governed by the Fokker-Planck equation. Due to the thermal fluctuation, we find that the small (large) black hole state can transit to the large (small) black hole state. Furthermore, the first passage time is calculated. For each temperature, a single peak is presented, which suggests that there is a considerable fraction of the first passage events taking place at short time. And the higher the temperature is, the faster decrease of the probability is. These results will uncover some intriguing dynamic properties of the stable small-large black hole phase transition in modified gravity.
By treating the black hole event horizon as a stochastic thermal fluctuating variable for small-large black hole phase transition, we investigate the dynamical process of phase transition for the Kerr AdS black holes on free energy landscape. We find
We investigate the presence of a black hole black string phase transition in Einstein Gauss Bonnet (EGB) gravity in the large dimension limit. The merger point is the static spacetime connecting the black string phase with the black hole phase. We co
In this paper, the new formalism of thermodynamic geometry proposed in [1] is employed in investigating phase transition points and the critical behavior of a Gauss Bonnet-AdS black hole in four dimensional spacetime. In this regard, extrinsic and in
This work is devoted to the exploration of shadow cast and center of mass energy in the background of a 4-dimensional charged Gauss-Bonnet AdS black hole. On investigating particle dynamics, we have examined BHs metric function. Whereas, with the hel
We report on a numerical investigation of the stability of scalarized black holes in Einstein dilaton Gauss-Bonnet (EdGB) gravity in the full dynamical theory, though restricted to spherical symmetry. We find evidence that for sufficiently small curv