ترغب بنشر مسار تعليمي؟ اضغط هنا

Particle-antiparticle in 4D charged Einstein-Gauss-Bonnet black hole

108   0   0.0 ( 0 )
 نشر من قبل Mostafa Bousder Mr
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the charge of the 4D-Einstein-Gauss-Bonnet black hole by a negative charge and a positive charge of a particle-antiparticle pair on the horizons r- and r+, respectively. We show that there are two types of the Schwarzschild black hole. We show also that the Einstein-Gauss-Bonnet black hole charge has quantified values. We obtain the Hawking-Bekenstein formula with two logarithmic corrections, the second correction depends on the cosmological constant and the black hole charge. Finally, we study the thermodynamics of the EGB-AdS black hole.



قيم البحث

اقرأ أيضاً

In this paper, we investigate the four-dimensional Einstein-Gauss-Bonnet black hole. The thermodynamic variables and equations of state of black holes are obtained in terms of a new parameterization. We discuss a formulation of the van der Waals equa tion by studying the effects of the temperature on P-V isotherms. We show the influence of the Cauchy horizon on the thermodynamic parameters. We prove by different methods, that the black hole entropy obey area law (plus logarithmic term that depends on the Gauss-Bonnet coupling {alpha}). We propose a physical meaning for the logarithmic correction to the area law. This work can be extended to the extremal EGB black hole, in that case, we study the relationship between compressibility factor, specific heat and the coupling {alpha}.
We investigated the superradiance and stability of the novel 4D charged Einstein-Gauss-Bonnet black hole which is recently inspired by Glavan and Lin [Phys. Rev. Lett. 124, 081301 (2020)]. We found that the positive Gauss-Bonnet coupling consant $alp ha$ enhances the superradiance, while the negative $alpha$ suppresses it. The condition for superradiant instability is proved. We also worked out the quasinormal modes (QNMs) of the charged Einstein-Gauss-Bonnet black hole and found that the real part of all the QNMs live beyond the superradiance condition and the imaginary parts are all negative. Therefore this black hole is superradiant stable. When $alpha$ makes the black hole extremal, there are normal modes.
We have investigated tidal forces and geodesic deviation motion in the 4D-Einstein-Gauss-Bonnet spacetime. Our results show that tidal force and geodesic deviation motion depend sharply on the sign of Gauss-Bonnet coupling constant. Comparing with Sc hwarzschild spacetime, the strength of tidal force becomes stronger for the negative Gauss-Bonnet coupling constant, but is weaker for the positive one. Moreover, tidal force behaves like those in the Schwarzschild spacetime as the coupling constant is negative, and like those in Reissner-Nordstr{o}m black hole as the constant is positive. We also present the change of geodesic deviation vector with Gauss-Bonnet coupling constant under two kinds of initial conditions.
We study the properties of compact objects in a particular 4D Horndeski theory originating from higher dimensional Einstein-Gauss-Bonnet gravity. Remarkably, an exact vacuum solution is known. This compact object differs from general relativity mostl y in the strong field regime. We discuss some properties of black holes in this framework and investigate in detail the properties of neutron stars, both static and in slow rotation. We find that for relatively modest deviations from general relativity, the secondary object in GW190814 is compatible with being a slowly-rotating neutron star, without resorting to very stiff or exotic equations of state. For larger deviations from general relativity, the equilibrium sequence of neutron stars matches asymptotically to the black hole limit, closing the mass gap between neutron stars and black holes of same radius, but the stability of equilibrium solutions has yet to be determined. In light of our results and of current observational constraints, we discuss specific constraints on the coupling constant that parametrizes deviations from general relativity in this theory.
We study a hairy black hole solution in the dilatonic Einstein-Gauss-Bonnet theory of gravitation, in which the Gauss-Bonnet term is non-minimally coupled to the dilaton field. Hairy black holes with spherical symmetry seem to be easily constructed w ith a positive Gauss-Bonnet coefficient $alpha$ within the coupling function, $f(phi) = alpha e^{gamma phi}$, in an asymptotically flat spacetime, i.e., no-hair theorem seems to be easily evaded in this theory. Therefore, it is natural to ask whether this construction can be expanded into the case with the negative coefficient $alpha$. In this paper, we present numerically the dilaton black hole solutions with a negative $alpha$ and analyze the properties of GB term through the aspects of the black hole mass. We construct the new integral constraint allowing the existence of the hairy solutions with the negative $alpha$. Through this procedure, we expand the evasion of the no-hair theorem for hairy black hole solutions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا