ﻻ يوجد ملخص باللغة العربية
Beam-driven collinear wakefield accelerators (CWAs) that operate by using slow-wave structures or plasmas hold great promise toward reducing the size of contemporary accelerators. Sustainable acceleration of charged particles to high energies in the CWA relies on using field-generating relativistic electron bunches with a highly asymmetric peak current profile and a large energy chirp. A new approach to obtaining such bunches has been proposed and illustrated with the accelerator design supported by particle tracking simulations. It has been shown that the required particle distribution in the longitudinal phase space can be obtained without collimators, giving CWAs an opportunity for employment in applications requiring a high repetition rate of operation.
An active plasma lens focuses the beam in both the horizontal and vertical planes simultaneously using a magnetic field generated by a discharge current through the plasma. A beam size of 5--10 $mu$m can be achieved using an focusing gradient on the
Next-generation plasma-based accelerators can push electron beams to GeV energies within centimetre distances. The plasma, excited by a driver pulse, is indeed able to sustain huge electric fields that can efficiently accelerate a trailing witness bu
We propose and demonstrate a novel method to produce few-femtosecond electron beam with relatively low timing jitter. In this method a relativistic electron beam is compressed from about 150 fs (rms) to about 7 fs (rms, upper limit) with the wakefiel
Drive particle beams in linear or weakly nonlinear regimes of the plasma wakefield accelerator quickly reach a radial equilibrium with the wakefield, which is described in detail for the first time. The equilibrium beam state and self-consistent wake
Beam diagnostics is important to guarantee good quality of beam in particle accelerator. Both the electron and positron run in the tunnel in some modern electron positron colliders such as Circular Electron Positron Collider (CEPC) to be built and Be