ترغب بنشر مسار تعليمي؟ اضغط هنا

High-speed RF Switch Electronics for picking up of Electron-Positron Beam Bunches

111   0   0.0 ( 0 )
 نشر من قبل Liujiang Yan
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Beam diagnostics is important to guarantee good quality of beam in particle accelerator. Both the electron and positron run in the tunnel in some modern electron positron colliders such as Circular Electron Positron Collider (CEPC) to be built and Beijing Electron Positron Collider II (BEPC II). To measure the electron and positron beams, picking up of these two different bunches in real time is of notable concern. Because the time interval between adjacent electron and positron bunches is quite small, for example, 6 ns in CEPC, high-speed switch electronics is required. This paper presents the prototype design of a high-speed radio frequency (RF) electronics that can pick up nanosecond positron-electron beam bunches with a switching time of less than 6 ns. Fast separation of electron and positron is achieved based on RF switches and precise delay adjustment of the controlling signals (~10 ps). Initial tests have been conducted in the laboratory to evaluate the performance of electronics, the results indicate that this circuit can successfully pick up the bunch signal within a time interval of 6 ns, which makes it possible to further measure the electron and position beams simultaneously.



قيم البحث

اقرأ أيضاً

138 - W. Chou , D. Capista , J. Griffin 2008
Two barrier RF systems were fabricated, tested and installed in the Fermilab Main Injector. Each can provide 8 kV rectangular pulses (the RF barriers) at 90 kHz. When a stationary barrier is combined with a moving barrier, injected beams from the Boo ster can be continuously deflected, folded and stacked in the Main Injector, which leads to doubling of the beam intensity. This paper gives a report on the beam experiment using this novel technology.
Beam-driven collinear wakefield accelerators (CWAs) that operate by using slow-wave structures or plasmas hold great promise toward reducing the size of contemporary accelerators. Sustainable acceleration of charged particles to high energies in the CWA relies on using field-generating relativistic electron bunches with a highly asymmetric peak current profile and a large energy chirp. A new approach to obtaining such bunches has been proposed and illustrated with the accelerator design supported by particle tracking simulations. It has been shown that the required particle distribution in the longitudinal phase space can be obtained without collimators, giving CWAs an opportunity for employment in applications requiring a high repetition rate of operation.
A high-intensity hyperon beam was constructed at CERN to deliver Sigma- to experiment WA89 at the Omega facility and operated from 1989 to 1994. The setup allowed rapid changeover between hyperon and conventional hadron beam configurations. The beam provided a Sigma-flux of 1.4 x 10^5 per burst at mean momenta between 330 and 345 Gev/c, produced by about 3 x 10^10 protons of 450 GeV/c . At the experiment target the beam had a Sigma-/pi- ratio close to 0.4 and a size of 1.6 x 3.7 cm^2. The beam particle trajectories and their momenta were measured with a scintillating fibre hodoscope in the beam channel and a silicon microstrip detector at the exit of the channel. A fast transition radiation detector was used to identify the pion component of the beam.
A broadband travelling wave kicker operating with 80 MHz repetition rates is required for the new PIP-II accelerator at Fermilab. We present a technique to drive simultaneously four series-connected enhancement mode GaN-on-silicon power transistors b y means of microwave photonics techniques. These four transistors are arranged into a high voltage and high repetition rate switch. Using multiple transistors in series is required to share switching losses. Using a photonic signal distribution system is required to achieve precise synchronization between transistors. We demonstrate 600 V arbitrary pulse generation into a 200 Ohm load with 2 ns rise/fall time. The arbitrary pulse widths can be adjusted from 4 ns to essentially DC.
The next generation of accelerators for Megawatt proton and heavy-ion beams moves us into a completely new domain of extreme specific energies of up to 0.1 MJ/g (Megajoule/gram) and specific power up to 1 TW/g (Terawatt/gram) in beam interactions wit h matter. This paper is focused on deleterious effects of controlled and uncontrolled impacts of high-intensity beams on components of beam-lines, target stations, beam absorbers, shielding and environment. Two new experiments at Fermilab are taken as an example. The Long-Baseline Neutrino Experiment (LBNE) will explore the interactions and transformations of the worlds highest-intensity neutrino beam by sending it from Fermilab more than 1,000 kilometers through the Earths mantle to a large liquid argon detector. The Mu2e experiment is devoted to studies of the conversion of a negative muon to electron in the field of a nucleus without emission of neutrinos.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا