ترغب بنشر مسار تعليمي؟ اضغط هنا

Radial equilibrium of relativistic particle bunches in plasma wakefield accelerators

99   0   0.0 ( 0 )
 نشر من قبل Konstantin Lotov V.
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English
 تأليف K.V. Lotov




اسأل ChatGPT حول البحث

Drive particle beams in linear or weakly nonlinear regimes of the plasma wakefield accelerator quickly reach a radial equilibrium with the wakefield, which is described in detail for the first time. The equilibrium beam state and self-consistent wakefields are obtained by combining analytical relationships, numerical integration, and first-principle simulations. In the equilibrium state, the beam density is strongly peaked near the axis, the beam radius is constant along the beam, and longitudinal variation of the focusing strength is balanced by varying beam emittance. The transverse momentum distribution of beam particles depends on the observation radius and is neither separable, nor Gaussian.



قيم البحث

اقرأ أيضاً

138 - B. Hidding , O. Karger , G. Wittig 2014
Synchronized, independently tunable and focused $mu$J-class laser pulses are used to release multiple electron populations via photo-ionization inside an electron-beam driven plasma wave. By varying the laser foci in the laboratory frame and the posi tion of the underdense photocathodes in the co-moving frame, the delays between the produced bunches and their energies are adjusted. The resulting multibunches have ultra-high quality and brightness, allowing for hitherto impossible bunch configurations such as spatially overlapping bunch populations with strictly separated energies, which opens up a new regime for light sources such as free-electron-lasers.
Earlier, the authors found a mechanism for the sequence of short relativistic electron bunches, which leads to resonant excitation of the wakefield, even if the repetition frequency of bunches differs from the plasma frequency. In this case, the sync hronization of frequencies is restored due to defocusing of the bunches which get into the bad phases with respect to the plasma wave. However, in this case, the bunches are lost, which as a result of this do not participate in the excitation of the wakefield. In this paper, numerical simulation was used to study the dynamics of electron bunches and the excitation of the wakefield in a magnetized plasma by a long sequence of short bunches of relativistic electrons. When a magnetic field is used, the defocussed bunches return to the region of interaction with the field after a certain time. In this case, the electrons of the bunches, returning to the necessary phases of the field, participate in the excitation of the wakefield. Also, the use of a magnetic field leads to an increase of the frequency of the excited wave relative to the repetition frequency of bunches. The latter increases the time for maintaining the resonance and, consequently, leads to an increase of the amplitude of the excited wakefield.
Injection of well-defined, high-quality electron populations into plasma waves is a key challenge of plasma wakefield accelerators. Here, we report on the first experimental demonstration of plasma density downramp injection in an electron-driven pla sma wakefield accelerator, which can be controlled and tuned in all-optical fashion by mJ-level laser pulses. The laser pulse is directed across the path of the plasma wave before its arrival, where it generates a local plasma density spike in addition to the background plasma by tunnelling ionization of a high ionization threshold gas component. This density spike distorts the plasma wave during the density downramp, causing plasma electrons to be injected into the plasma wave. By tuning the laser pulse energy and shape, highly flexible plasma density spike profiles can be designed, enabling dark current free, versatile production of high-quality electron beams. This in turn permits creation of unique injected beam configurations such as counter-oscillating twin beamlets.
Plasma wake lens in which all short relativistic electron bunches of sequence are focused identically and uniformly is studied analytically and by numerical simulation. For two types of lenses necessary parameters of focused sequence of relativistic electron bunches are formulated. Verification of these parameters is performed by numerical simulation.
In a laser plasma accelerator (LPA), a short and intense laser pulse propagating in a plasma drives a wakefield (a plasma wave with a relativistic phase velocity) that can sustain extremely large electric fields, enabling compact accelerating structu res. Potential LPA applications include compact radiation sources and high energy linear colliders. We propose and study plasma wave excitation by an incoherent combination of a large number of low energy laser pulses (i.e., without constraining the pulse phases). We show that, in spite of the incoherent nature of electromagnetic fields within the volume occupied by the pulses, the excited wakefield is regular and its amplitude is comparable or equal to that obtained using a single, coherent pulse with the same energy. These results provide a path to the next generation of LPA-based applications, where incoherently combined multiple pulses may enable high repetition rate, high average power LPAs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا