ترغب بنشر مسار تعليمي؟ اضغط هنا

The inner circumstellar dust of the red supergiant Antares as seen with VLT/SPHERE/ZIMPOL

98   0   0.0 ( 0 )
 نشر من قبل Emily Cannon
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The processes by which red supergiants lose mass are not fully understood thus-far and their mass-loss rates lack theoretical constraints. The ambient surroundings of the nearby M0.5 Iab star Antares offers an ideal environment to obtain detailed empirical information on the outflow properties at its onset, and hence indirectly, on the mode(s) of mass loss. We present and analyse optical VLT/SPHERE/ZIMPOL polarimetric imaging with angular resolution down to 23 milli-arcsec, sufficient to spatially resolve both the stellar disk and its direct surroundings. We detect a conspicuous feature in polarised intensity that we identify as a clump containing dust, which we characterise through 3D radiative transfer modelling. The clump is positioned behind the plane of the sky, therefore has been released from the backside of the star, and its inner edge is only 0.3 stellar radii above the surface. The current dust mass in the clump is $1.3^{+0.2}_{-1.0} times 10^{-8}$ M$_{odot}$, though its proximity to the star implies that dust nucleation is probably still ongoing. The ejection of clumps of gas and dust makes a non-negligible contribution to the total mass lost from the star which could possibly be linked to localised surface activity such as convective motions or non-radial pulsations.



قيم البحث

اقرأ أيضاً

The processes leading to dust formation and the subsequent role it plays in driving mass loss in cool evolved stars is an area of intense study. Here we present high resolution ALMA Science Verification data of the continuum emission around the highl y evolved oxygen-rich red supergiant VY CMa. These data enable us to study the dust in its inner circumstellar environment at a spatial resolution of 129 mas at 321 GHz and 59 mas at 658 GHz, thus allowing us to trace dust on spatial scales down to 11 R$_{star}$ (71 AU). Two prominent dust components are detected and resolved. The brightest dust component, C, is located 334 mas (61 R$_{star}$) South East of the star and has a dust mass of at least $2.5times 10^{-4}$ M$_{odot}$. It has a dust emissivity spectral index of $beta =-0.1$ at its peak, implying that it is optically thick at these frequencies with a cool core of $T_{d}lesssim 100$ K. Interestingly, not a single molecule in the ALMA data has emission close to the peak of this massive dust clump. The other main dust component, VY, is located at the position of the star and contains a total dust mass of $4.0 times 10^{-5} $M$_{odot}$. It also contains a weaker dust feature extending over $60$ R$_{star}$ to the North with the total component having a typical dust emissivity spectral index of $beta =0.7$. We find that at least $17%$ of the dust mass around VY CMa is located in clumps ejected within a more quiescent roughly spherical stellar wind, with a quiescent dust mass loss rate of $5 times 10^{-6}$ M$_{odot} $yr$^{-1}$. The anisotropic morphology of the dust indicates a continuous, directed mass loss over a few decades, suggesting that this mass loss cannot be driven by large convection cells alone.
We use high-angular-resolution images obtained with SPHERE/ZIMPOL to study the photosphere, the warm molecular layer, and the inner wind of the close-by oxygen-rich AGB star R Doradus. We present observations in filters V, cntH$alpha$, and cnt820 and investigate the surface brightness distribution of the star and of the polarised light produced in the inner envelope. Thanks to second-epoch observations in cntH$alpha$, we are able to see variability on the stellar photosphere. We find that in the first epoch the surface brightness of R Dor is asymmetric in V and cntH$alpha$, the filters where molecular opacity is stronger, while in cnt820 the surface brightness is closer to being axisymmetric. The second-epoch observations in cntH$alpha$ show that the morphology of R Dor changes completely in a timespan of 48 days to a more axisymmetric and compact configuration. The polarised intensity is asymmetric in all epochs and varies by between a factor of 2.3 and 3.7 with azimuth for the different images. We fit the radial profile of the polarised intensity using a spherically symmetric model and a parametric description of the dust density profile, $rho(r)=rho_circ r^{-n}$. On average, we find exponents of $- 4.5 pm 0.5$ that correspond to a much steeper density profile than that of a wind expanding at constant velocity. The dust densities we derive imply an upper limit for the dust-to-gas ratio of $sim 2times10^{-4}$ at 5.0 $R_star$. Given the uncertainties in observations and models, this value is consistent with the minimum values required by wind-driving models for the onset of a wind, of $sim 3.3times10^{-4}$. However, if the steep density profile we find extends to larger distances from the star, the dust-to-gas ratio will quickly become too small for the wind of R Dor to be driven by the grains that produce the scattered light.
We present visible polarimetric imaging observations of the well-studied AGB star W Hya taken with VLT/SPHERE-ZIMPOL as well as high spectral resolution long-baseline interferometric observations with the AMBER instrument of the Very Large Telescope Interferometer (VLTI). We observed W Hya with VLT/SPHERE-ZIMPOL at three wavelengths in the continuum (645, 748, and 820 nm), in the Halpha line at 656.3 nm, and in the TiO band at 717 nm. The VLTI/AMBER observations were carried out in the wavelength region of the CO first overtone lines near 2.3 micron with a spectral resolution of 12000. Taking advantage of the polarimetric imaging capability of SPHERE-ZIMPOL combined with the superb adaptive optics performance, we have succeeded in spatially resolving three clumpy dust clouds located at ~50 mas (~2 Rstar) from the central star, revealing dust formation very close to the star. The AMBER data in the individual CO lines suggest a molecular outer atmosphere extending to ~3 Rstar. Furthermore, the SPHERE-ZIMPOL image taken over the Halpha line shows emission with a radius of up to ~160 mas (~7 Rstar). We found that dust, molecular gas, and Halpha-emitting hot gas are coexisting within 2--3 Rstar. Our modeling suggests that the observed polarized intensity maps can reasonably be explained by large (0.4--0.5 micron) grains of Al2O3 or Mg2SiO4 or MgSiO3 in an optically thin shell with an inner boundary radius of 1.9--2.0 Rstar. The observed clumpy structure can be reproduced by a density enhancement by a factor of 4 +/- 1. The grain size derived from our polarimetric images is consistent with the prediction of the hydrodynamical models for the mass loss driven by the scattering due to micron-sized grains. The detection of the clumpy dust clouds close to the star lends support to the dust formation induced by pulsation and large convective cells as predicted by the 3-D simulations for AGB stars.
90 - K. Ohnaka , G. Weigelt , 2017
Red supergiant stars represent a late stage of the evolution of stars more massive than about nine solar masses, in which they develop complex, multi-component atmospheres. Bright spots have been detected in the atmosphere of red supergiants using in terferometric imaging. Above the photosphere of a red supergiant, the molecular outer atmosphere extends up to about two stellar radii. Furthermore, the hot chromosphere (5,000 to 8,000 kelvin) and cool gas (less than 3,500 kelvin) of a red supergiant coexist at about three stellar radii. The dynamics of such complex atmospheres has been probed by ultraviolet and optical spectroscopy. The most direct approach, however, is to measure the velocity of gas at each position over the image of stars as in observations of the Sun. Here we report the mapping of the velocity field over the surface and atmosphere of the nearby red supergiant Antares. The two-dimensional velocity field map obtained from our near-infrared spectro-interferometric imaging reveals vigorous upwelling and downdrafting motions of several huge gas clumps at velocities ranging from about -20 to +20 kilometres per second in the atmosphere, which extends out to about 1.7 stellar radii. Convection alone cannot explain the observed turbulent motions and atmospheric extension, suggesting that an unidentified process is operating in the extended atmosphere.
108 - R. Ligi , A. Vigan , R. Gratton 2017
We present observations of the Herbig Ae star HD169142 with VLT/SPHERE instruments InfraRed Dual-band Imager and Spectrograph (IRDIS) ($K1K2$ and $H2H3$ bands) and the Integral Field Spectrograph (IFS) ($Y$, $J$ and $H$ bands). We detect several brig ht blobs at $sim$180 mas separation from the star, and a faint arc-like structure in the IFS data. Our reference differential imaging (RDI) data analysis also finds a bright ring at the same separation. We show, using a simulation based on polarized light data, that these blobs are actually part of the ring at 180 mas. These results demonstrate that the earlier detections of blobs in the $H$ and $K_S$ bands at these separations in Biller et al. as potential planet/substellar companions are actually tracing a bright ring with a Keplerian motion. Moreover, we detect in the images an additional bright structure at $sim$93 mas separation and position angle of 355$^{circ}$, at a location very close to previous detections. It appears point-like in the $YJ$ and $K$ bands but is more extended in the $H$ band. We also marginally detect an inner ring in the RDI data at $sim$100 mas. Follow-up observations are necessary to confirm the detection and the nature of this source and structure.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا