ﻻ يوجد ملخص باللغة العربية
We present observations of the Herbig Ae star HD169142 with VLT/SPHERE instruments InfraRed Dual-band Imager and Spectrograph (IRDIS) ($K1K2$ and $H2H3$ bands) and the Integral Field Spectrograph (IFS) ($Y$, $J$ and $H$ bands). We detect several bright blobs at $sim$180 mas separation from the star, and a faint arc-like structure in the IFS data. Our reference differential imaging (RDI) data analysis also finds a bright ring at the same separation. We show, using a simulation based on polarized light data, that these blobs are actually part of the ring at 180 mas. These results demonstrate that the earlier detections of blobs in the $H$ and $K_S$ bands at these separations in Biller et al. as potential planet/substellar companions are actually tracing a bright ring with a Keplerian motion. Moreover, we detect in the images an additional bright structure at $sim$93 mas separation and position angle of 355$^{circ}$, at a location very close to previous detections. It appears point-like in the $YJ$ and $K$ bands but is more extended in the $H$ band. We also marginally detect an inner ring in the RDI data at $sim$100 mas. Follow-up observations are necessary to confirm the detection and the nature of this source and structure.
Debris disks are usually detected through the infrared excess over the photospheric level of their host star. The most favorable stars for disk detection are those with spectral types between A and K, while the statistics for debris disks detected ar
We studied the well known circumstellar disk around the Herbig Ae/Be star HD 97048 with high angular resolution to reveal undetected structures in the disk, which may be indicative of disk evolutionary processes such as planet formation. We used the
Context. Direct imaging of debris discs gives important information about their nature, their global morphology, and allows us to identify specific structures possibly in connection with the presence of gravitational perturbers. It is the most straig
The quest to discover exoplanets is one of the most important missions in astrophysics, and is widely performed using the transit method, which allows for the detection of exoplanets down to the size of Mercury. However, to confirm these detections,
Dusty debris disks around pre- and main-sequence stars are potential signposts for the existence of planetesimals and exoplanets. Giant planet formation is therefore expected to play a key role in the evolution of the disk. This is indirectly confirm