ﻻ يوجد ملخص باللغة العربية
We present visible polarimetric imaging observations of the well-studied AGB star W Hya taken with VLT/SPHERE-ZIMPOL as well as high spectral resolution long-baseline interferometric observations with the AMBER instrument of the Very Large Telescope Interferometer (VLTI). We observed W Hya with VLT/SPHERE-ZIMPOL at three wavelengths in the continuum (645, 748, and 820 nm), in the Halpha line at 656.3 nm, and in the TiO band at 717 nm. The VLTI/AMBER observations were carried out in the wavelength region of the CO first overtone lines near 2.3 micron with a spectral resolution of 12000. Taking advantage of the polarimetric imaging capability of SPHERE-ZIMPOL combined with the superb adaptive optics performance, we have succeeded in spatially resolving three clumpy dust clouds located at ~50 mas (~2 Rstar) from the central star, revealing dust formation very close to the star. The AMBER data in the individual CO lines suggest a molecular outer atmosphere extending to ~3 Rstar. Furthermore, the SPHERE-ZIMPOL image taken over the Halpha line shows emission with a radius of up to ~160 mas (~7 Rstar). We found that dust, molecular gas, and Halpha-emitting hot gas are coexisting within 2--3 Rstar. Our modeling suggests that the observed polarized intensity maps can reasonably be explained by large (0.4--0.5 micron) grains of Al2O3 or Mg2SiO4 or MgSiO3 in an optically thin shell with an inner boundary radius of 1.9--2.0 Rstar. The observed clumpy structure can be reproduced by a density enhancement by a factor of 4 +/- 1. The grain size derived from our polarimetric images is consistent with the prediction of the hydrodynamical models for the mass loss driven by the scattering due to micron-sized grains. The detection of the clumpy dust clouds close to the star lends support to the dust formation induced by pulsation and large convective cells as predicted by the 3-D simulations for AGB stars.
Our recent visible polarimetric images of the well-studied AGB star W Hya taken at pre-maximum light (phase 0.92) with VLT/SPHERE-ZIMPOL have revealed clumpy dust clouds close to the star at ~2 Rstar. We present second-epoch SPHERE-ZIMPOL observation
We use high-angular-resolution images obtained with SPHERE/ZIMPOL to study the photosphere, the warm molecular layer, and the inner wind of the close-by oxygen-rich AGB star R Doradus. We present observations in filters V, cntH$alpha$, and cnt820 and
We determine the physical parameters of the outer atmosphere of a sample of eight evolved stars, including the red supergiant {alpha} Scorpii, the red giant branch stars {alpha} Bootis and {gamma} Crucis, the K giant {lambda} Velorum, the normal M gi
The processes by which red supergiants lose mass are not fully understood thus-far and their mass-loss rates lack theoretical constraints. The ambient surroundings of the nearby M0.5 Iab star Antares offers an ideal environment to obtain detailed emp
We present a near-infrared spectro-interferometric observation of the non-Mira-type, semiregular asymptotic giant branch star SW Vir. Our aim is to probe the physical properties of the outer atmosphere with spatially resolved data in individual molec