ترغب بنشر مسار تعليمي؟ اضغط هنا

A Deterministic Parallel APSP Algorithm and its Applications

160   0   0.0 ( 0 )
 نشر من قبل Adam Karczmarz
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we show a deterministic parallel all-pairs shortest paths algorithm for real-weighted directed graphs. The algorithm has $tilde{O}(nm+(n/d)^3)$ work and $tilde{O}(d)$ depth for any depth parameter $din [1,n]$. To the best of our knowledge, such a trade-off has only been previously described for the real-weighted single-source shortest paths problem using randomization [Bringmann et al., ICALP17]. Moreover, our result improves upon the parallelism of the state-of-the-art randomized parallel algorithm for computing transitive closure, which has $tilde{O}(nm+n^3/d^2)$ work and $tilde{O}(d)$ depth [Ullman and Yannakakis, SIAM J. Comput. 91]. Our APSP algorithm turns out to be a powerful tool for designing efficient planar graph algorithms in both parallel and sequential regimes. One notable ingredient of our parallel APSP algorithm is a simple deterministic $tilde{O}(nm)$-work $tilde{O}(d)$-depth procedure for computing $tilde{O}(n/d)$-size hitting sets of shortest $d$-hop paths between all pairs of vertices of a real-weighted digraph. Such hitting sets have also been called $d$-hub sets. Hub sets have previously proved especially useful in designing parallel or dynamic shortest paths algorithms and are typically obtained via random sampling. Our procedure implies, for example, an $tilde{O}(nm)$-time deterministic algorithm for finding a shortest negative cycle of a real-weighted digraph. Such a near-optimal bound for this problem has been so far only achieved using a randomized algorithm [Orlin et al., Discret. Appl. Math. 18].



قيم البحث

اقرأ أيضاً

91 - Julia Chuzhoy , Yu Gao , Jason Li 2019
We consider the classical Minimum Balanced Cut problem: given a graph $G$, compute a partition of its vertices into two subsets of roughly equal volume, while minimizing the number of edges connecting the subsets. We present the first {em determinist ic, almost-linear time} approximation algorithm for this problem. Specifically, our algorithm, given an $n$-vertex $m$-edge graph $G$ and any parameter $1leq rleq O(log n)$, computes a $(log m)^{r^2}$-approximation for Minimum Balanced Cut on $G$, in time $Oleft ( m^{1+O(1/r)+o(1)}cdot (log m)^{O(r^2)}right )$. In particular, we obtain a $(log m)^{1/epsilon}$-approximation in time $m^{1+O(1/sqrt{epsilon})}$ for any constant $epsilon$, and a $(log m)^{f(m)}$-approximation in time $m^{1+o(1)}$, for any slowly growing function $m$. We obtain deterministic algorithms with similar guarantees for the Sparsest Cut and the Lowest-Conductance Cut problems. Our algorithm for the Minimum Balanced Cut problem in fact provides a stronger guarantee: it either returns a balanced cut whose value is close to a given target value, or it certifies that such a cut does not exist by exhibiting a large subgraph of $G$ that has high conductance. We use this algorithm to obtain deterministic algorithms for dynamic connectivity and minimum spanning forest, whose worst-case update time on an $n$-vertex graph is $n^{o(1)}$, thus resolving a major open problem in the area of dynamic graph algorithms. Our work also implies deterministic algorithms for a host of additional problems, whose time complexities match, up to subpolynomial in $n$ factors, those of known randomized algorithms. The implications include almost-linear time deterministic algorithms for solving Laplacian systems and for approximating maximum flows in undirected graphs.
188 - Shahar Dobzinski , Ami Mor 2015
The problem of maximizing a non-negative submodular function was introduced by Feige, Mirrokni, and Vondrak [FOCS07] who provided a deterministic local-search based algorithm that guarantees an approximation ratio of $frac 1 3$, as well as a randomiz ed $frac 2 5$-approximation algorithm. An extensive line of research followed and various algorithms with improving approximation ratios were developed, all of them are randomized. Finally, Buchbinder et al. [FOCS12] presented a randomized $frac 1 2$-approximation algorithm, which is the best possible. This paper gives the first deterministic algorithm for maximizing a non-negative submodular function that achieves an approximation ratio better than $frac 1 3$. The approximation ratio of our algorithm is $frac 2 5$. Our algorithm is based on recursive composition of solutions obtained by the local search algorithm of Feige et al. We show that the $frac 2 5$ approximation ratio can be guaranteed when the recursion depth is $2$, and leave open the question of whether the approximation ratio improves as the recursion depth increases.
We show a deterministic algorithm for computing edge connectivity of a simple graph with $m$ edges in $m^{1+o(1)}$ time. Although the fastest deterministic algorithm by Henzinger, Rao, and Wang [SODA17] has a faster running time of $O(mlog^{2}mloglog m)$, we believe that our algorithm is conceptually simpler. The key tool for this simplication is the expander decomposition. We exploit it in a very straightforward way compared to how it has been previously used in the literature.
We present a deterministic dynamic algorithm for maintaining a $(1+epsilon)f$-approximate minimum cost set cover with $O(flog(Cn)/epsilon^2)$ amortized update time, when the input set system is undergoing element insertions and deletions. Here, $n$ d enotes the number of elements, each element appears in at most $f$ sets, and the cost of each set lies in the range $[1/C, 1]$. Our result, together with that of Gupta et al. [STOC`17], implies that there is a deterministic algorithm for this problem with $O(flog(Cn))$ amortized update time and $O(min(log n, f))$-approximation ratio, which nearly matches the polynomial-time hardness of approximation for minimum set cover in the static setting. Our update time is only $O(log (Cn))$ away from a trivial lower bound. Prior to our work, the previous best approximation ratio guaranteed by deterministic algorithms was $O(f^2)$, which was due to Bhattacharya et al. [ICALP`15]. In contrast, the only result that guaranteed $O(f)$-approximation was obtained very recently by Abboud et al. [STOC`19], who designed a dynamic algorithm with $(1+epsilon)f$-approximation ratio and $O(f^2 log n/epsilon)$ amortized update time. Besides the extra $O(f)$ factor in the update time compared to our and Gupta et al.s results, the Abboud et al. algorithm is randomized, and works only when the adversary is oblivious and the sets are unweighted (each set has the same cost). We achieve our result via the primal-dual approach, by maintaining a fractional packing solution as a dual certificate. Unlike previous primal-dual algorithms that try to satisfy some local constraints for individual sets at all time, our algorithm basically waits until the dual solution changes significantly globally, and fixes the solution only where the fix is needed.
In the ${-1,0,1}$-APSP problem the goal is to compute all-pairs shortest paths (APSP) on a directed graph whose edge weights are all from ${-1,0,1}$. In the (min,max)-product problem the input is two $ntimes n$ matrices $A$ and $B$, and the goal is t o output the (min,max)-product of $A$ and $B$. This paper provides a new algorithm for the ${-1,0,1}$-APSP problem via a simple reduction to the target-(min,max)-product problem where the input is three $ntimes n$ matrices $A,B$, and $T$, and the goal is to output a Boolean $ntimes n$ matrix $C$ such that the $(i,j)$ entry of $C$ is 1 if and only if the $(i,j)$ entry of the (min,max)-product of $A$ and $B$ is exactly the $(i,j)$ entry of the target matrix $T$. If (min,max)-product can be solved in $T_{MM}(n) = Omega(n^2)$ time then it is straightforward to solve target-(min,max)-product in $O(T_{MM}(n))$ time. Thus, given the recent result of Bringmann, Kunnemann, and Wegrzycki [STOC 2019], the ${-1,0,1}$-APSP problem can be solved in the same time needed for solving approximate APSP on graphs with positive weights. Moreover, we design a simple algorithm for target-(min,max)-product when the inputs are restricted to the family of inputs generated by our reduction. Using fast rectangular matrix multiplication, the new algorithm is faster than the current best known algorithm for (min,max)-product.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا