ترغب بنشر مسار تعليمي؟ اضغط هنا

A Deterministic Algorithm for Balanced Cut with Applications to Dynamic Connectivity, Flows, and Beyond

92   0   0.0 ( 0 )
 نشر من قبل Thatchaphol Saranurak
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the classical Minimum Balanced Cut problem: given a graph $G$, compute a partition of its vertices into two subsets of roughly equal volume, while minimizing the number of edges connecting the subsets. We present the first {em deterministic, almost-linear time} approximation algorithm for this problem. Specifically, our algorithm, given an $n$-vertex $m$-edge graph $G$ and any parameter $1leq rleq O(log n)$, computes a $(log m)^{r^2}$-approximation for Minimum Balanced Cut on $G$, in time $Oleft ( m^{1+O(1/r)+o(1)}cdot (log m)^{O(r^2)}right )$. In particular, we obtain a $(log m)^{1/epsilon}$-approximation in time $m^{1+O(1/sqrt{epsilon})}$ for any constant $epsilon$, and a $(log m)^{f(m)}$-approximation in time $m^{1+o(1)}$, for any slowly growing function $m$. We obtain deterministic algorithms with similar guarantees for the Sparsest Cut and the Lowest-Conductance Cut problems. Our algorithm for the Minimum Balanced Cut problem in fact provides a stronger guarantee: it either returns a balanced cut whose value is close to a given target value, or it certifies that such a cut does not exist by exhibiting a large subgraph of $G$ that has high conductance. We use this algorithm to obtain deterministic algorithms for dynamic connectivity and minimum spanning forest, whose worst-case update time on an $n$-vertex graph is $n^{o(1)}$, thus resolving a major open problem in the area of dynamic graph algorithms. Our work also implies deterministic algorithms for a host of additional problems, whose time complexities match, up to subpolynomial in $n$ factors, those of known randomized algorithms. The implications include almost-linear time deterministic algorithms for solving Laplacian systems and for approximating maximum flows in undirected graphs.



قيم البحث

اقرأ أيضاً

We show a deterministic algorithm for computing edge connectivity of a simple graph with $m$ edges in $m^{1+o(1)}$ time. Although the fastest deterministic algorithm by Henzinger, Rao, and Wang [SODA17] has a faster running time of $O(mlog^{2}mloglog m)$, we believe that our algorithm is conceptually simpler. The key tool for this simplication is the expander decomposition. We exploit it in a very straightforward way compared to how it has been previously used in the literature.
Dynamic Connectivity is a fundamental algorithmic graph problem, motivated by a wide range of applications to social and communication networks and used as a building block in various other algorithms, such as the bi-connectivity and the dynamic mini mal spanning tree problems. In brief, we wish to maintain the connected components of the graph under dynamic edge insertions and deletions. In the sequential case, the problem has been well-studied from both theoretical and practical perspectives. However, much less is known about efficient concurrent solutions to this problem. This is the gap we address in this paper. We start from one of the classic data structures used to solve this problem, the Euler Tour Tree. Our first contribution is a non-blocking single-writer implementation of it. We leverage this data structure to obtain the first truly concurrent generalization of dynamic connectivity, which preserves the time complexity of its sequential counterpart, but is also scalable in practice. To achieve this, we rely on three main techniques. The first is to ensure that connectivity queries, which usually dominate real-world workloads, are non-blocking. The second non-trivial technique expands the above idea by making all queries that do not change the connectivity structure non-blocking. The third ingredient is applying fine-grained locking for updating the connected components, which allows operations on disjoint components to occur in parallel. We evaluate the resulting algorithm on various workloads, executing on both real and synthetic graphs. The results show the efficiency of each of the proposed optimizations; the most efficient variant improves the performance of a coarse-grained based implementation on realistic scenarios up to 6x on average and up to 30x when connectivity queries dominate.
We present a deterministic dynamic algorithm for maintaining a $(1+epsilon)f$-approximate minimum cost set cover with $O(flog(Cn)/epsilon^2)$ amortized update time, when the input set system is undergoing element insertions and deletions. Here, $n$ d enotes the number of elements, each element appears in at most $f$ sets, and the cost of each set lies in the range $[1/C, 1]$. Our result, together with that of Gupta et al. [STOC`17], implies that there is a deterministic algorithm for this problem with $O(flog(Cn))$ amortized update time and $O(min(log n, f))$-approximation ratio, which nearly matches the polynomial-time hardness of approximation for minimum set cover in the static setting. Our update time is only $O(log (Cn))$ away from a trivial lower bound. Prior to our work, the previous best approximation ratio guaranteed by deterministic algorithms was $O(f^2)$, which was due to Bhattacharya et al. [ICALP`15]. In contrast, the only result that guaranteed $O(f)$-approximation was obtained very recently by Abboud et al. [STOC`19], who designed a dynamic algorithm with $(1+epsilon)f$-approximation ratio and $O(f^2 log n/epsilon)$ amortized update time. Besides the extra $O(f)$ factor in the update time compared to our and Gupta et al.s results, the Abboud et al. algorithm is randomized, and works only when the adversary is oblivious and the sets are unweighted (each set has the same cost). We achieve our result via the primal-dual approach, by maintaining a fractional packing solution as a dual certificate. Unlike previous primal-dual algorithms that try to satisfy some local constraints for individual sets at all time, our algorithm basically waits until the dual solution changes significantly globally, and fixes the solution only where the fix is needed.
In this paper we show a deterministic parallel all-pairs shortest paths algorithm for real-weighted directed graphs. The algorithm has $tilde{O}(nm+(n/d)^3)$ work and $tilde{O}(d)$ depth for any depth parameter $din [1,n]$. To the best of our knowled ge, such a trade-off has only been previously described for the real-weighted single-source shortest paths problem using randomization [Bringmann et al., ICALP17]. Moreover, our result improves upon the parallelism of the state-of-the-art randomized parallel algorithm for computing transitive closure, which has $tilde{O}(nm+n^3/d^2)$ work and $tilde{O}(d)$ depth [Ullman and Yannakakis, SIAM J. Comput. 91]. Our APSP algorithm turns out to be a powerful tool for designing efficient planar graph algorithms in both parallel and sequential regimes. One notable ingredient of our parallel APSP algorithm is a simple deterministic $tilde{O}(nm)$-work $tilde{O}(d)$-depth procedure for computing $tilde{O}(n/d)$-size hitting sets of shortest $d$-hop paths between all pairs of vertices of a real-weighted digraph. Such hitting sets have also been called $d$-hub sets. Hub sets have previously proved especially useful in designing parallel or dynamic shortest paths algorithms and are typically obtained via random sampling. Our procedure implies, for example, an $tilde{O}(nm)$-time deterministic algorithm for finding a shortest negative cycle of a real-weighted digraph. Such a near-optimal bound for this problem has been so far only achieved using a randomized algorithm [Orlin et al., Discret. Appl. Math. 18].
We study the vertex-decremental Single-Source Shortest Paths (SSSP) problem: given an undirected graph $G=(V,E)$ with lengths $ell(e)geq 1$ on its edges and a source vertex $s$, we need to support (approximate) shortest-path queries in $G$, as $G$ un dergoes vertex deletions. In a shortest-path query, given a vertex $v$, we need to return a path connecting $s$ to $v$, whose length is at most $(1+epsilon)$ times the length of the shortest such path, where $epsilon$ is a given accuracy parameter. The problem has many applications, for example to flow and cut problems in vertex-capacitated graphs. Our main result is a randomized algorithm for vertex-decremental SSSP with total expected update time $O(n^{2+o(1)}log L)$, that responds to each shortest-path query in $O(nlog L)$ time in expectation, returning a $(1+epsilon)$-approximate shortest path. The algorithm works against an adaptive adversary. The main technical ingredient of our algorithm is an $tilde O(|E(G)|+ n^{1+o(1)})$-time algorithm to compute a emph{core decomposition} of a given dense graph $G$, which allows us to compute short paths between pairs of query vertices in $G$ efficiently. We believe that this core decomposition algorithm may be of independent interest. We use our result for vertex-decremental SSSP to obtain $(1+epsilon)$-approximation algorithms for maximum $s$-$t$ flow and minimum $s$-$t$ cut in vertex-capacitated graphs, in expected time $n^{2+o(1)}$, and an $O(log^4n)$-approximation algorithm for the vertex version of the sparsest cut problem with expected running time $n^{2+o(1)}$. These results improve upon the previous best known results for these problems in the regime where $m= omega(n^{1.5 + o(1)})$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا