ترغب بنشر مسار تعليمي؟ اضغط هنا

Model-Free Assortment Pricing with Transaction Data

66   0   0.0 ( 0 )
 نشر من قبل Saman Lagzi
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the problem when a firm sets prices for products based on the transaction data, i.e., which product past customers chose from an assortment and what were the historical prices that they observed. Our approach does not impose a model on the distribution of the customers valuations and only assumes, instead, that purchase choices satisfy incentive-compatible constraints. The individual valuation of each past customer can then be encoded as a polyhedral set, and our approach maximizes the worst-case revenue assuming that new customers valuations are drawn from the empirical distribution implied by the collection of such polyhedra. We show that the optimal prices in this setting can be approximated at any arbitrary precision by solving a compact mixed-integer linear program. Moreover, we study the single-product case and relate it to the traditional model-based approach. We also design three approximation strategies that are of low computational complexity and interpretable. Comprehensive numerical studies based on synthetic and real data suggest that our pricing approach is uniquely beneficial when the historical data has a limited size or is susceptible to model misspecification.



قيم البحث

اقرأ أيضاً

In this paper, we consider a Markov chain choice model with single transition. In this model, customers arrive at each product with a certain probability. If the arrived product is unavailable, then the seller can recommend a subset of available prod ucts to the customer and the customer will purchase one of the recommended products or choose not to purchase with certain transition probabilities. The distinguishing features of the model are that the seller can control which products to recommend depending on the arrived product and that each customer either purchases a product or leaves the market after one transition. We study the assortment optimization problem under this model. Particularly, we show that this problem is generally NP-Hard even if each product could only transit to at most two products. Despite the complexity of the problem, we provide polynomial time algorithms for several special cases, such as when the transition probabilities are homogeneous with respect to the starting point, or when each product can only transit to one other product. We also provide a tight performance bound for revenue-ordered assortments. In addition, we propose a compact mixed integer program formulation that can solve this problem of large size. Through extensive numerical experiments, we show that the proposed algorithms can solve the problem efficiently and the obtained assortments could significantly improve the revenue of the seller than under the Markov chain choice model.
An investor with constant absolute risk aversion trades a risky asset with general It^o-dynamics, in the presence of small proportional transaction costs. In this setting, we formally derive a leading-order optimal trading policy and the associated w elfare, expressed in terms of the local dynamics of the frictionless optimizer. By applying these results in the presence of a random endowment, we obtain asymptotic formulas for utility indifference prices and hedging strategies in the presence of small transaction costs.
We study the problem of optimizing assortment decisions in the presence of product-specific costs when customers choose according to a multinomial logit model. This problem is NP-hard and approximate solutions methods have been proposed in the litera ture to obtain both primal and dual bounds in a tractable manner. We propose the first exact solution method for this problem and show that provably optimal assortments of instances with up to one thousand products can be found, on average, in about two tenths of a second. In particular, we propose a bounding procedure based on the approximation method of Feldman and Topaloglu (2015a) to provide tight primal and dual bounds at a fraction of their computing times. We show how these bounds can be used to effectively identify an optimal assortment. We also describe how to adapt our approach for handling cardinality constraints on the size of the assortment or space/resource capacity constraints.
Our goal is to analyze the system of Hamilton-Jacobi-Bellman equations arising in derivative securities pricing models. The European style of an option price is constructed as a difference of the certainty equivalents to the value functions solving t he system of HJB equations. We introduce the transformation method for solving the penalized nonlinear partial differential equation. The transformed equation involves possibly non-constant the risk aversion function containing the negative ratio between the second and first derivatives of the utility function. Using comparison principles we derive useful bounds on the option price. We also propose a finite difference numerical discretization scheme with some computational examples.
Contextual dynamic pricing aims to set personalized prices based on sequential interactions with customers. At each time period, a customer who is interested in purchasing a product comes to the platform. The customers valuation for the product is a linear function of contexts, including product and customer features, plus some random market noise. The seller does not observe the customers true valuation, but instead needs to learn the valuation by leveraging contextual information and historical binary purchase feedbacks. Existing models typically assume full or partial knowledge of the random noise distribution. In this paper, we consider contextual dynamic pricing with unknown random noise in the valuation model. Our distribution-free pricing policy learns both the contextual function and the market noise simultaneously. A key ingredient of our method is a novel perturbed linear bandit framework, where a modified linear upper confidence bound algorithm is proposed to balance the exploration of market noise and the exploitation of the current knowledge for better pricing. We establish the regret upper bound and a matching lower bound of our policy in the perturbed linear bandit framework and prove a sub-linear regret bound in the considered pricing problem. Finally, we demonstrate the superior performance of our policy on simulations and a real-life auto-loan dataset.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا