ﻻ يوجد ملخص باللغة العربية
Our goal is to analyze the system of Hamilton-Jacobi-Bellman equations arising in derivative securities pricing models. The European style of an option price is constructed as a difference of the certainty equivalents to the value functions solving the system of HJB equations. We introduce the transformation method for solving the penalized nonlinear partial differential equation. The transformed equation involves possibly non-constant the risk aversion function containing the negative ratio between the second and first derivatives of the utility function. Using comparison principles we derive useful bounds on the option price. We also propose a finite difference numerical discretization scheme with some computational examples.
An investor with constant absolute risk aversion trades a risky asset with general It^o-dynamics, in the presence of small proportional transaction costs. In this setting, we formally derive a leading-order optimal trading policy and the associated w
This paper considers exponential utility indifference pricing for a multidimensional non-traded assets model subject to inter-temporal default risk, and provides a semigroup approximation for the utility indifference price. The key tool is the splitt
In this paper, we consider the problem of equal risk pricing and hedging in which the fair price of an option is the price that exposes both sides of the contract to the same level of risk. Focusing for the first time on the context where risk is mea
We propose a model for an insurance loss index and the claims process of a single insurance company holding a fraction of the total number of contracts that captures both ordinary losses and losses due to catastrophes. In this model we price a catast
This paper proposes the sample path generation method for the stochastic volatility version of CGMY process. We present the Monte-Carlo method for European and American option pricing with the sample path generation and calibrate model parameters to