ﻻ يوجد ملخص باللغة العربية
We study the problem of optimizing assortment decisions in the presence of product-specific costs when customers choose according to a multinomial logit model. This problem is NP-hard and approximate solutions methods have been proposed in the literature to obtain both primal and dual bounds in a tractable manner. We propose the first exact solution method for this problem and show that provably optimal assortments of instances with up to one thousand products can be found, on average, in about two tenths of a second. In particular, we propose a bounding procedure based on the approximation method of Feldman and Topaloglu (2015a) to provide tight primal and dual bounds at a fraction of their computing times. We show how these bounds can be used to effectively identify an optimal assortment. We also describe how to adapt our approach for handling cardinality constraints on the size of the assortment or space/resource capacity constraints.
This paper considers a general convex constrained problem setting where functions are not assumed to be differentiable nor Lipschitz continuous. Our motivation is in finding a simple first-order method for solving a wide range of convex optimization
Shape-constrained convex regression problem deals with fitting a convex function to the observed data, where additional constraints are imposed, such as component-wise monotonicity and uniform Lipschitz continuity. This paper provides a unified frame
In this paper we study second-order optimality conditions for non-convex set-constrained optimization problems. For a convex set-constrained optimization problem, it is well-known that second-order optimality conditions involve the support function o
In this paper we present a new algorithmic realization of a projection-based scheme for general convex constrained optimization problem. The general idea is to transform the original optimization problem to a sequence of feasibility problems by itera
In this paper, we consider a Markov chain choice model with single transition. In this model, customers arrive at each product with a certain probability. If the arrived product is unavailable, then the seller can recommend a subset of available prod