ﻻ يوجد ملخص باللغة العربية
Model-based fault injection methods are widely used for the evaluation of fault tolerance in safety-critical control systems. In this paper, we introduce a new model-based fault injection method implemented as a highlycustomizable Simulink block called FIBlock. It supports the injection of typical faults of essential heterogeneous components of Cyber-Physical Systems, such as sensors, computing hardware, and network. The FIBlock GUI allows the user to select a fault type and configure multiple parameters to tune error magnitude, fault activation time, and fault exposure duration. Additional trigger inputs and outputs of the block enable the modeling of conditional faults. Furthermore, two or more FIBlocks connected with these trigger signals can model chained errors. The proposed fault injection method is demonstrated with a lower-limb EXO-LEGS exoskeleton, an assistive device for the elderly in everyday life. The EXO-LEGS model-based dynamic control is realized in the Simulink environment and allows easy integration of the aforementioned FIBlocks. Exoskeletons, in general, being a complex CPS with multiple sensors and actuators, are prone to hardware and software faults. In the case study, three types of faults were investigated: 1) sensor freeze, 2) stuck-at-0, 3) bit-flip. The fault injection experiments helped to determine faults that have the most significant effects on the overall system reliability and identify the fine line for the critical fault duration after that the controller could no longer mitigate faults.
We develop a risk-averse safety analysis method for stochastic systems on discrete infinite time horizons. Our method quantifies the notion of risk for a control system in terms of the severity of a harmful random outcome in a fraction of worst cases
Given a stochastic dynamical system modelled via stochastic differential equations (SDEs), we evaluate the safety of the system through characterisations of its exit time moments. We lift the (possibly nonlinear) dynamics into the space of the occupa
In this research, a new data mining-based design approach has been developed for designing complex mechanical systems such as a crashworthy passenger car with uncertainty modeling. The method allows exploring the big crash simulation dataset to desig
Increasing penetration of renewable energy introduces significant uncertainty into power systems. Traditional simulation-based verification methods may not be applicable due to the unknown-but-bounded feature of the uncertainty sets. Emerging set-the
The security of energy supply in a power grid critically depends on the ability to accurately estimate the state of the system. However, manipulated power flow measurements can potentially hide overloads and bypass the bad data detection scheme to in