ﻻ يوجد ملخص باللغة العربية
Given a stochastic dynamical system modelled via stochastic differential equations (SDEs), we evaluate the safety of the system through characterisations of its exit time moments. We lift the (possibly nonlinear) dynamics into the space of the occupation and exit measures to obtain a set of linear evolution equations which depend on the infinitesimal generator of the SDE. Coupled with appropriate semidefinite positive matrix constraints, this yields a moment-based approach for the computation of exit time moments of SDEs with polynomial drift and diffusion dynamics. To extend the capability of the moment approach, we propose a state augmentation method which allows us to generate the evolution equations for a broader class of nonlinear stochastic systems and apply the moment method to previously unsupported dynamics. In particular, we show a general augmentation strategy for sinusoidal dynamics which can be found in most physical systems. We employ the methodology on an Ornstein-Uhlenbeck process and stochastic spring-mass-damper model to characterise their safety via their expected exit times and show the additional exit distribution insights that are afforded through higher order moments.
In this paper, we study the robustness of safety properties of a linear dynamical system with respect to model uncertainties. Our paper involves three parts. In the first part, we provide symbolic (analytical) and numerical (representation based) tec
We develop a risk-averse safety analysis method for stochastic systems on discrete infinite time horizons. Our method quantifies the notion of risk for a control system in terms of the severity of a harmful random outcome in a fraction of worst cases
This paper proposes a safety analysis method that facilitates a tunable balance between the worst-case and risk-neutral perspectives. First, we define a risk-sensitive safe set to specify the degree of safety attained by a stochastic system. This set
The deployment of autonomous systems that operate in unstructured environments necessitates algorithms to verify their safety. This can be challenging due to, e.g., black-box components in the control software, or undermodelled dynamics that prevent
Complex dynamical systems rely on the correct deployment and operation of numerous components, with state-of-the-art methods relying on learning-enabled components in various stages of modeling, sensing, and control at both offline and online levels.