ترغب بنشر مسار تعليمي؟ اضغط هنا

Diffusive wave dynamics beyond the continuum limit

132   0   0.0 ( 0 )
 نشر من قبل Paul Dieterle
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Scientists have observed and studied diffusive waves in contexts as disparate as population genetics and cell signaling. Often, these waves are propagated by discrete entities or agents, such as individual cells in the case of cell signaling. For a broad class of diffusive waves, we characterize the transition between the collective propagation of diffusive waves -- in which the wave speed is well-described by continuum theory -- and the propagation of diffusive waves by individual agents. We show that this transition depends heavily on the dimensionality of the system in which the wave propagates and that disordered systems yield dynamics largely consistent with lattice systems. In some system dimensionalities, the intuition that closely packed sources more accurately mimic a continuum can be grossly violated.



قيم البحث

اقرأ أيضاً

We consider a kinetic model whose evolution is described by a Boltzmann-like equation for the one-particle phase space distribution $f(x,v,t)$. There are hard-sphere collisions between the particles as well as collisions with randomly fixed scatterer s. As a result, this evolution does not conserve momentum but only mass and energy. We prove that the diffusively rescaled $f^varepsilon(x,v,t)=f(varepsilon^{-1}x,v,varepsilon^{-2}t)$, as $varepsilonto 0$ tends to a Maxwellian $M_{rho, 0, T}=frac{rho}{(2pi T)^{3/2}}exp[{-frac{|v|^2}{2T}}]$, where $rho$ and $T$ are solutions of coupled diffusion equations and estimate the error in $L^2_{x,v}$.
90 - Yichen Huang 2020
My previous work [arXiv:1902.00977] studied the dynamics of Renyi entanglement entropy $R_alpha$ in local quantum circuits with charge conservation. Initializing the system in a random product state, it was proved that $R_alpha$ with Renyi index $alp ha>1$ grows no faster than diffusively (up to a sublogarithmic correction) if charge transport is not faster than diffusive. The proof was given only for qubit or spin-$1/2$ systems. In this note, I extend the proof to qudit systems, i.e., spin systems with local dimension $dge2$.
The nonlocal Fisher equation is a diffusion-reaction equation with a nonlocal quadratic competition, which describes the reaction between distant individuals. This equation arises in evolutionary biological systems, where the arena for the dynamics i s trait space, diffusion accounts for mutations and individuals with similar traits compete, resulting in partial niche overlap. It has been found that the (non-cutoff) deterministic system gives rise to a spatially inhomogeneous state for a certain class of interaction kernels, while the stochastic system produces an inhomogeneous state for small enough population densities. Here we study the problem of front propagation in this system, comparing the stochastic dynamics to the heuristic approximation of this system by a deterministic system where the linear growth term is cut off below some critical density. Of particular interest is the nontrivial pattern left behind the front. For large population density, or small cutoff, there is a constant velocity wave propagating from the populated region to the unpopulated region. As in the local Fisher equation, the spreading velocity is much lower than the Fisher velocity which is the spreading velocity for infinite population size. The stochastic simulations give approximately the same spreading velocity as the deterministic simulation with appropriate birth cutoff. When the population density is small enough, there is a different mechanism of population spreading. The population is concentrated on clusters which divide and separate. This mode of spreading has small spreading velocity, decaying exponentially with the range of the interaction kernel.
This paper continues a numerical investigation of orbits evolved in `frozen, time-independent N-body realisations of smooth time-independent density distributions corresponding to both integrable and nonintegrable potentials, allowing for N as large as 300,000. The principal focus is on distinguishing between, and quantifying, the effects of graininess on initial conditions corresponding, in the continuum limit, to regular and chaotic orbits. Ordinary Lyapunov exponents X do not provide a useful diagnostic for distinguishing between regular and chaotic behaviour. Frozen-N orbits corresponding in the continuum limit to both regular and chaotic characteristics have large positive X even though, for large N, the `regular frozen-N orbits closely resemble regular characteristics in the smooth potential. Viewed macroscopically both `regular and `chaotic frozen-N orbits diverge as a power law in time from smooth orbits with the same initial condition. There is, however, an important difference between `regular and `chaotic frozen-N orbits: For regular orbits, the time scale associated with this divergence t_G ~ N^{1/2}t_D, with t_D a characteristic dynamical time; for chaotic orbits t_G ~ (ln N) t_D. At least for N>1000 or so, clear distinctions exist between phase mixing of initially localised orbit ensembles which, in the continuum limit, exhibit regular versus chaotic behaviour. For both regular and chaotic ensembles, finite-N effects are well mimicked, both qualitatively and quantitatively, by energy-conserving white noise with amplitude ~ 1/N. This suggests strongly that earlier investigations of the effects of low amplitude noise on phase space transport in smooth potentials are directly relevant to real physical systems.
193 - L.Salari 2015
Analytically tractable dynamical systems exhibiting a whole range of normal and anomalous deterministic diffusion are rare. Here we introduce a simple non-chaotic model in terms of an interval exchange transformation suitably lifted onto the whole re al line which preserves distances except at a countable set of points. This property, which leads to vanishing Lyapunov exponents, is designed to mimic diffusion in non-chaotic polygonal billiards that give rise to normal and anomalous diffusion in a fully deterministic setting. As these billiards are typically too complicated to be analyzed from first principles, simplified models are needed to identify the minimal ingredients generating the different transport regimes. For our model, which we call the slicer map, we calculate all its moments in position analytically under variation of a single control parameter. We show that the slicer map exhibits a transition from subdiffusion over normal diffusion to superdiffusion under parameter variation. Our results may help to understand the delicate parameter dependence of the type of diffusion generated by polygonal billiards. We argue that in different parameter regions the transport properties of our simple model match to different classes of known stochastic processes. This may shed light on difficulties to match diffusion in polygonal billiards to a single anomalous stochastic process.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا