ﻻ يوجد ملخص باللغة العربية
The nonlocal Fisher equation is a diffusion-reaction equation with a nonlocal quadratic competition, which describes the reaction between distant individuals. This equation arises in evolutionary biological systems, where the arena for the dynamics is trait space, diffusion accounts for mutations and individuals with similar traits compete, resulting in partial niche overlap. It has been found that the (non-cutoff) deterministic system gives rise to a spatially inhomogeneous state for a certain class of interaction kernels, while the stochastic system produces an inhomogeneous state for small enough population densities. Here we study the problem of front propagation in this system, comparing the stochastic dynamics to the heuristic approximation of this system by a deterministic system where the linear growth term is cut off below some critical density. Of particular interest is the nontrivial pattern left behind the front. For large population density, or small cutoff, there is a constant velocity wave propagating from the populated region to the unpopulated region. As in the local Fisher equation, the spreading velocity is much lower than the Fisher velocity which is the spreading velocity for infinite population size. The stochastic simulations give approximately the same spreading velocity as the deterministic simulation with appropriate birth cutoff. When the population density is small enough, there is a different mechanism of population spreading. The population is concentrated on clusters which divide and separate. This mode of spreading has small spreading velocity, decaying exponentially with the range of the interaction kernel.
The problem of front propagation in flowing media is addressed for laminar velocity fields in two dimensions. Three representative cases are discussed: stationary cellular flow, stationary shear flow, and percolating flow. Production terms of Fisher-
Front propagation in two dimensional steady and unsteady cellular flows is investigated in the limit of very fast reaction and sharp front, i.e., in the geometrical optics limit. In the steady case, by means of a simplified model, we provide an analy
We discuss spatial dynamics and collapse scenarios of localized waves governed by the nonlinear Schr{o}dinger equation with nonlocal nonlinearity. Firstly, we prove that for arbitrary nonsingular attractive nonlocal nonlinear interaction in arbitrary
Non-equilibrium dissipative systems usually exhibit multistability, leading to the presence of propagative domain between steady states. We investigate the front propagation into an unstable state in discrete media. Based on a paradigmatic model of c
In the present work we illustrate that classical but nonlinear systems may possess features reminiscent of quantum ones, such as memory, upon suitable external perturbation. As our prototypical example, we use the two-dimensional complex Ginzburg-Lan