ﻻ يوجد ملخص باللغة العربية
We develop the foundations of a geometric theory of countably-infinite approximate groups, extending work of Bjorklund and the second-named author. Our theory is based on the notion of a quasi-isometric quasi-action (qiqac) of an approximate group on a metric space. More specifically, we introduce a geometric notion of finite generation for approximate group and prove that every geometrically finitely-generated approximate group admits a geometric qiqac on a proper geodesic metric space. We then show that all such spaces are quasi-isometric, hence can be used to associate a canonical QI type with every geometrically finitely-generated approximate group. This in turn allows us to define geometric invariants of approximate groups using QI invariants of metric spaces. Among the invariants we consider are asymptotic dimension, finiteness properties, numbers of ends and growth type. A particular focus is on qiqacs on hyperbolic spaces. Our strongest results are obtained for approximate groups which admit a geometric qiqac on a proper geodesic hyperbolic space. For such ``hyperbolic approximate groups we establish a number of fundamental properties in analogy with the case of hyperbolic groups. For example, we show that their asymptotic dimension is one larger than the topological dimension of their Gromov boundary and that - under some mild assumption of being ``non-elementary - they have exponential growth and act minimally on their Gromov boundary. We also study convex cocompact qiqacs on hyperbolic spaces. Using the theory of Morse boundaries, we extend some of our results concerning qiqacs on hyperbolic spaces to qiqacs on proper geodesic metric spaces with non-trivial Morse boundary.
A geometric setup for control theory is presented. The argument is developed through the study of the extremals of action functionals defined on piecewise differentiable curves, in the presence of differentiable non-holonomic constraints. Special emp
In this paper, we compute the {Sigma}^n(G) and {Omega}^n(G) invariants when 1 rightarrow H rightarrow G rightarrow K rightarrow 1 is a short exact sequence of finitely generated groups with K finite. We also give sufficient conditions for G to have t
The purpose of this paper is to write a complete survey of the (spectral) manifold learning methods and nonlinear dimensionality reduction (NLDR) in data reduction. The first two NLDR methods in history were respectively published in Science in 2000
In this note, we compute the {Sigma}^1(G) invariant when 1 {to} H {to} G {to} K {to} 1 is a short exact sequence of finitely generated groups with K finite. As an application, we construct a group F semidirect Z_2 where F is the R. Thompsons group F