ﻻ يوجد ملخص باللغة العربية
In this paper, we compute the {Sigma}^n(G) and {Omega}^n(G) invariants when 1 rightarrow H rightarrow G rightarrow K rightarrow 1 is a short exact sequence of finitely generated groups with K finite. We also give sufficient conditions for G to have the R_{infty} property in terms of {Omega}^n(H) and {Omega}^n(K) when either K is finite or the sequence splits. As an application, we construct a group F rtimes? Z_2 where F is the R. Thompsons group F and show that F rtimes Z_2 has the R_{infty} property while F is not characteristic.
In this note, we compute the {Sigma}^1(G) invariant when 1 {to} H {to} G {to} K {to} 1 is a short exact sequence of finitely generated groups with K finite. As an application, we construct a group F semidirect Z_2 where F is the R. Thompsons group F
We compute the {Omega}^1(G) invariant when 1 {to} H {to} G {to} K {to} 1 is a split short exact sequence. We use this result to compute the invariant for pure and full braid groups on compact surfaces. Applications to twisted conjugacy classes and to
Let $G$ be a finitely generated group that can be written as an extension [ 1 longrightarrow K stackrel{i}{longrightarrow} G stackrel{f}{longrightarrow} Gamma longrightarrow 1 ] where $K$ is a finitely generated group. By a study of the BNS invariant
We develop the foundations of a geometric theory of countably-infinite approximate groups, extending work of Bjorklund and the second-named author. Our theory is based on the notion of a quasi-isometric quasi-action (qiqac) of an approximate group on
Bogopolski, Martino and Ventura in [BMV10] introduced a general criteria to construct groups extensions with unsolvable conjugacy problem using short exact sequences. We prove that such extensions have always solvable word problem. This makes the pro