ترغب بنشر مسار تعليمي؟ اضغط هنا

Insensitizing controls for the heat equation with respect to boundary variations

83   0   0.0 ( 0 )
 نشر من قبل Yannick Privat
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

This article is dedicated to insensitization issues of a quadratic functional involving the solution of the linear heat equation with respect to domains variations. This work can be seen as a continuation of [P. Lissy, Y. Privat, and Y. Simpore. Insensitizing control for linear and semi-linear heat equations with partially unknown domain. ESAIM Control Optim. Calc. Var., 25:Art. 50, 21, 2019], insofar as we generalize several of the results it contains and investigate new related properties. In our framework, we consider boundary variations of the spatial domain on which the solution of the PDE is defined at each time, and investigate three main issues: (i) approximate insensitization, (ii) approximate insensitization combined with an exact insensitization for a finite-dimensional subspace, and (iii) exact insensitization. We provide positive answers to questions (i) and (ii) and partial results to question (iii).



قيم البحث

اقرأ أيضاً

In this paper we establish an observability inequality for the heat equation with bounded potentials on the whole space. Roughly speaking, such a kind of inequality says that the total energy of solutions can be controlled by the energy localized in a subdomain, which is equidistributed over the whole space. The proof of this inequality is mainly adapted from the parabolic frequency function method, which plays an important role in proving the unique continuation property for solutions of parabolic equations. As an immediate application, we show that the null controllability holds for the heat equation with bounded potentials on the whole space.
130 - Andreas Hartmann 2021
We discuss reachable states for the Hermite heat equation on a segment with boundary $L^2$-controls. The Hermite heat equation corresponds to the heat equation to which a quadratic potential is added. We will discuss two situations: when one endpoint of the segment is the origin and when the segment is symmetric with respect to the origin. One of the main results is that reachable states extend to functions in a Bergman space on a square one diagonal of which is the segment under consideration, and that functions holomorphic in a neighborhood of this square are reachable.
In this paper we analyze a nonlinear parabolic equation characterized by a singular diffusion term describing very fast diffusion effects. The equation is settled in a smooth bounded three-dimensional domain and complemented with a general boundary c ondition of dynamic type. This type of condition prescribes some kind of mass conservation; hence extinction effects are not expected for solutions that emanate from strictly positive initial data. Our main results regard existence of weak solutions, instantaneous regularization properties, long-time behavior, and, under special conditions, uniqueness.
The goal of this work is to compute a boundary control of reaction-diffusion partial differential equation. The boundary control is subject to a constant delay, whereas the equation may be unstable without any control. For this system equivalent to a parabolic equation coupled with a transport equation, a prediction-based control is explicitly computed. To do that we decompose the infinite-dimensional system into two parts: one finite-dimensional unstable part, and one stable infinite-dimensional part. An finite-dimensional delay controller is computed for the unstable part, and it is shown that this controller succeeds in stabilizing the whole partial differential equation. The proof is based on a an explicit form of the classical Artstein transformation, and an appropriate Lyapunov function. A numerical simulation illustrate the constructive design method.
We consider a class of quasilinear operators on a bounded domain $Omegasubset mathbb R^n$ and address the question of optimizing the first eigenvalue with respect to the boundary conditions, which are of the Robin-type. We describe the optimizing bou ndary conditions and establish upper and lower bounds on the respective maximal and minimal eigenvalue.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا