ﻻ يوجد ملخص باللغة العربية
In this paper we establish an observability inequality for the heat equation with bounded potentials on the whole space. Roughly speaking, such a kind of inequality says that the total energy of solutions can be controlled by the energy localized in a subdomain, which is equidistributed over the whole space. The proof of this inequality is mainly adapted from the parabolic frequency function method, which plays an important role in proving the unique continuation property for solutions of parabolic equations. As an immediate application, we show that the null controllability holds for the heat equation with bounded potentials on the whole space.
We investigate observability and Lipschitz stability for the Heisenberg heat equation on the rectangular domain $$Omega = (-1,1)timesmathbb{T}timesmathbb{T}$$ taking as observation regions slices of the form $omega=(a,b) times mathbb{T} times mathbb{
This article is dedicated to insensitization issues of a quadratic functional involving the solution of the linear heat equation with respect to domains variations. This work can be seen as a continuation of [P. Lissy, Y. Privat, and Y. Simpore. Inse
We study the relativistic heat equation in one space dimension. We prove a local regularity result when the initial datum is locally Lipschitz in its support. We propose a numerical scheme that captures the known features of the solutions and allows
We discuss reachable states for the Hermite heat equation on a segment with boundary $L^2$-controls. The Hermite heat equation corresponds to the heat equation to which a quadratic potential is added. We will discuss two situations: when one endpoint
We prove a Hardy-type inequality for the gradient of the Heisenberg Laplacian on open bounded convex polytopes on the first Heisenberg Group. The integral weight of the Hardy inequality is given by the distance function to the boundary measured with