ﻻ يوجد ملخص باللغة العربية
The goal of this work is to compute a boundary control of reaction-diffusion partial differential equation. The boundary control is subject to a constant delay, whereas the equation may be unstable without any control. For this system equivalent to a parabolic equation coupled with a transport equation, a prediction-based control is explicitly computed. To do that we decompose the infinite-dimensional system into two parts: one finite-dimensional unstable part, and one stable infinite-dimensional part. An finite-dimensional delay controller is computed for the unstable part, and it is shown that this controller succeeds in stabilizing the whole partial differential equation. The proof is based on a an explicit form of the classical Artstein transformation, and an appropriate Lyapunov function. A numerical simulation illustrate the constructive design method.
A reaction-diffusion equation with power nonlinearity formulated either on the half-line or on the finite interval with nonzero boundary conditions is shown to be locally well-posed in the sense of Hadamard for data in Sobolev spaces. The result is e
This is the second part of our study of the Inertial Manifolds for 1D systems of reaction-diffusion-advection equations initiated in cite{KZI} and it is devoted to the case of periodic boundary conditions. It is shown that, in contrast to the case of
This paper concerns feedback stabilization of point vortex equilibria above an inclined thin plate and a three-plate configuration known as the Kasper Wing in the presence of an oncoming uniform flow. The flow is assumed to be potential and is modele
This is the first part of our study of inertial manifolds for the system of 1D reaction-diffusion-advection equations which is devoted to the case of Dirichlet or Neumann boundary conditions. Although this problem does not initially possess the spect
It has been proved by Zuazua in the nineties that the internally controlled semilinear 1D wave equation $partial_{tt}y-partial_{xx}y + g(y)=f 1_{omega}$, with Dirichlet boundary conditions, is exactly controllable in $H^1_0(0,1)cap L^2(0,1)$ with con