ﻻ يوجد ملخص باللغة العربية
This paper establishes a close relationship among the four information theoretic problems, namely Campbell source coding, Arikan guessing, Huleihel et al. memoryless guessing and Bunte and Lapidoth tasks partitioning problems. We first show that the aforementioned problems are mathematically related via a general moment minimization problem whose optimum solution is given in terms of Renyi entropy. We then propose a general framework for the mismatched version of these problems and establish all the asymptotic results using this framework. Further, we study an ordered tasks partitioning problem that turns out to be a generalisation of Arikans guessing problem. Finally, with the help of this general framework, we establish an equivalence among all these problems, in the sense that, knowing an asymptotically optimal solution in one problem helps us find the same in all other problems.
We study four problems namely, Campbells source coding problem, Arikans guessing problem, Huieihel et al.s memoryless guessing problem, and Bunte and Lapidoths task partitioning problem. We observe a close relationship among these problems. In all th
This paper provides upper and lower bounds on the optimal guessing moments of a random variable taking values on a finite set when side information may be available. These moments quantify the number of guesses required for correctly identifying the
Stationary memoryless sources produce two correlated random sequences $X^n$ and $Y^n$. A guesser seeks to recover $X^n$ in two stages, by first guessing $Y^n$ and then $X^n$. The contributions of this work are twofold: (1) We characterize the least a
Analog coding decouples the tasks of protecting against erasures and noise. For erasure correction, it creates an analog redundancy by means of band-limited discrete Fourier transform (DFT) interpolation, or more generally, by an over-complete expans
Depth coding in 3D-HEVC for the multiview video plus depth (MVD) architecture (i) deforms object shapes due to block-level edge-approximation; (ii) misses an opportunity for high compressibility at near-lossless quality by failing to exploit strong h