ترغب بنشر مسار تعليمي؟ اضغط هنا

Improved Bounds on Lossless Source Coding and Guessing Moments via Renyi Measures

180   0   0.0 ( 0 )
 نشر من قبل Igal Sason
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper provides upper and lower bounds on the optimal guessing moments of a random variable taking values on a finite set when side information may be available. These moments quantify the number of guesses required for correctly identifying the unknown object and, similarly to Arikans bounds, they are expressed in terms of the Arimoto-Renyi conditional entropy. Although Arikans bounds are asymptotically tight, the improvement of the bounds in this paper is significant in the non-asymptotic regime. Relationships between moments of the optimal guessing function and the MAP error probability are also established, characterizing the exact locus of their attainable values. The bounds on optimal guessing moments serve to improve non-asymptotic bounds on the cumulant generating function of the codeword lengths for fixed-to-variable optimal lossless source coding without prefix constraints. Non-asymptotic bounds on the reliability function of discrete memoryless sources are derived as well. Relying on these techniques, lower bounds on the cumulant generating function of the codeword lengths are derived, by means of the smooth Renyi entropy, for source codes that allow decoding errors.



قيم البحث

اقرأ أيضاً

63 - Igal Sason 2018
This paper provides tight bounds on the Renyi entropy of a function of a discrete random variable with a finite number of possible values, where the considered function is not one-to-one. To that end, a tight lower bound on the Renyi entropy of a dis crete random variable with a finite support is derived as a function of the size of the support, and the ratio of the maximal to minimal probability masses. This work was inspired by the recently published paper by Cicalese et al., which is focused on the Shannon entropy, and it strengthens and generalizes the results of that paper to Renyi entropies of arbitrary positive orders. In view of these generalized bounds and the works by Arikan and Campbell, non-asymptotic bounds are derived for guessing moments and lossless data compression of discrete memoryless sources.
We study four problems namely, Campbells source coding problem, Arikans guessing problem, Huieihel et al.s memoryless guessing problem, and Bunte and Lapidoths task partitioning problem. We observe a close relationship among these problems. In all th ese problems, the objective is to minimize moments of some functions of random variables, and Renyi entropy and Sundaresans divergence arise as optimal solutions. This motivates us to establish a connection among these four problems. In this paper, we study a more general problem and show that R{e}nyi and Shannon entropies arise as its solution. We show that the problems on source coding, guessing and task partitioning are particular instances of this general optimization problem, and derive the lower bounds using this framework. We also refine some known results and present new results for mismatched version of these problems using a unified approach. We strongly feel that this generalization would, in addition to help in understanding the similarities and distinctiveness of these problems, also help to solve any new problem that falls in this framework.
This paper establishes a close relationship among the four information theoretic problems, namely Campbell source coding, Arikan guessing, Huleihel et al. memoryless guessing and Bunte and Lapidoth tasks partitioning problems. We first show that the aforementioned problems are mathematically related via a general moment minimization problem whose optimum solution is given in terms of Renyi entropy. We then propose a general framework for the mismatched version of these problems and establish all the asymptotic results using this framework. Further, we study an ordered tasks partitioning problem that turns out to be a generalisation of Arikans guessing problem. Finally, with the help of this general framework, we establish an equivalence among all these problems, in the sense that, knowing an asymptotically optimal solution in one problem helps us find the same in all other problems.
213 - Elad Domanovitz , Uri Erez 2017
Integer-forcing source coding has been proposed as a low-complexity method for compression of distributed correlated Gaussian sources. In this scheme, each encoder quantizes its observation using the same fine lattice and reduces the result modulo a coarse lattice. Rather than directly recovering the individual quantized signals, the decoder first recovers a full-rank set of judiciously chosen integer linear combinations of the quantized signals, and then inverts it. It has been observed that the method works very well for most but not all source covariance matrices. The present work quantifies the measure of bad covariance matrices by studying the probability that integer-forcing source coding fails as a function of the allocated rate, %in excess of the %Berger-Tung benchmark, where the probability is with respect to a random orthonormal transformation that is applied to the sources prior to quantization. For the important case where the signals to be compressed correspond to the antenna inputs of relays in an i.i.d. Rayleigh fading environment, this orthonormal transformation can be viewed as being performed by nature. Hence, the results provide performance guarantees for distributed source coding via integer forcing in this scenario.
This paper studies pliable index coding, in which a sender broadcasts information to multiple receivers through a shared broadcast medium, and the receivers each have some message a priori and want any message they do not have. An approach, based on receivers that are absent from the problem, was previously proposed to find lower bounds on the optimal broadcast rate. In this paper, we introduce new techniques to obtained better lower bounds, and derive the optimal broadcast rates for new classes of the problems, including all problems with up to four absent receivers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا