ﻻ يوجد ملخص باللغة العربية
Kramers theorem ensures double degeneracy in the energy spectrum of a time-reversal symmetric fermionic system with half-integer total spin. Here we are now trying to go beyond the closed system and discuss Kramers degeneracy in open systems out of equilibrium. In this letter, we prove that the Kramers degeneracy in interacting fermionic systems is equivalent to the degeneracy in the spectra of different spins together with the vanishing of the inter-spin spectrum. We find the violation of Kramers degeneracy in time-reversal symmetric open quantum systems is locked with whether the system reaches thermal equilibrium. After a sudden coupling to an environment in a time-reversal symmetry preserving way, the Kramers doublet experiences an energy splitting at a short time and then a recovery process. We verified the violation and revival of Kramers degeneracy in a concrete model of interacting fermions and we find Kramers degeneracy is restored after the local thermalization time. By contrast, for time-reversal symmetry $tilde{cal T}$ with $tilde{cal T}^2=1$, we find although there is a violation and revival of spectral degeneracy for different spins, the inter-spin spectral function is always nonzero. We also prove that the degeneracy in spectral function protected by unitary symmetry can be maintained always.
Kramers degeneracy theorem underpins many interesting effects in quantum systems with time-reversal symmetry. We show that the generator of dynamics for Markovian open fermionic systems can exhibit an analogous degeneracy, protected by a combination
We study the null space degeneracy of open quantum systems with multiple non-Abelian, strong symmetries. By decomposing the Hilbert space representation of these symmetries into an irreducible representation involving the direct sum of multiple, comm
At low temperatures, elementary excitations of a one-dimensional quantum liquid form a gas that can move as a whole with respect to the center of mass of the system. This internal motion attenuates at exponentially long time scales. As a result, in a
Bulk-boundary correspondence, a central principle in topological matter relating bulk topological invariants to edge states, breaks down in a generic class of non-Hermitian systems that have so far eluded experimental effort. Here we theoretically pr
We demonstrate that a weakly disordered metal with short-range interactions exhibits a transition in the quantum chaotic dynamics when changing the temperature or the interaction strength. For weak interactions, the system displays exponential growth