ﻻ يوجد ملخص باللغة العربية
GeSn alloys are nowadays considered as the most promising materials to build Group IV laser sources on silicon (Si) in a full complementary metal oxide semiconductor-compatible approach. Recent GeSn laser developments rely on increasing the band structure directness, by increasing the Sn content in thick GeSn layers grown on germanium (Ge) virtual substrates (VS) on Si. These lasers nonetheless suffer from a lack of defect management and from high threshold densities. In this work we examine the lasing characteristics of GeSn alloys with Sn contents ranging from 7 % to 10.5 %. The GeSn layers were patterned into suspended microdisk cavities with different diameters in the 4-SI{8 }{micrometer} range. We evidence direct band gap in GeSn with 7 % of Sn and lasing at 2-SI{2.3 }{micrometer} wavelength under optical injection with reproducible lasing thresholds around SI{10 }{kilowattpersquarecentimeter}, lower by one order of magnitude as compared to the literature. These results were obtained after the removal of the dense array of misfit dislocations in the active region of the GeSn microdisk cavities. The results offer new perspectives for future designs of GeSn-based laser sources.
Recent demonstrations of optically pumped lasers based on GeSn alloys put forward the prospect of efficient laser sources monolithically integrated on a Si photonic platform. For instance, GeSn layers with 12.5% of Sn were reported to lase at 2.5 um
Formation, emission and lasing properties of strain-free InP(As)/AlInAs quantum dots (QDs) embedded in AlInAs microdisk (MD) cavity were investigated using transmission electron microscopy and photoluminescence (PL) techniques. In MD structures, the
Silicon photonics in the near-Infra-Red, up to 1.6 um, is already one of key technologies in optical data communications, particularly short-range. It is also being prospected for applications in quantum computing, artificial intelligence, optical si
Lasers differ from other light sources in that they are coherent, and their coherence makes them indispensable to both fundamental research and practical application. In optomechanical cavities, phonon and photon lasing is facilitated by the ability
The genesis of lasing, as an evolution of the laser hybrid eigenstates comprised of electromagnetic modes and atomic polarization, is considered. It is shown that the start of coherent generation at the laser threshold is preceded by the formation of