ﻻ يوجد ملخص باللغة العربية
Recent demonstrations of optically pumped lasers based on GeSn alloys put forward the prospect of efficient laser sources monolithically integrated on a Si photonic platform. For instance, GeSn layers with 12.5% of Sn were reported to lase at 2.5 um wavelength up to 130 K. In this work, we report a longer emitted wavelength and a significant improvement in lasing temperature. The improvements resulted from the use of higher Sn content GeSn layers of optimized crystalline quality, grown on graded Sn content buffers using Reduced Pressure CVD. The fabricated GeSn micro-disks with 13% and 16% of Sn showed lasing operation at 2.6 um and 3.1 um wavelengths, respectively. For the longest wavelength (i.e 3.1 um), lasing was demonstrated up to 180 K, with a threshold of 377 kW/cm2 at 25 K.
GeSn alloys are nowadays considered as the most promising materials to build Group IV laser sources on silicon (Si) in a full complementary metal oxide semiconductor-compatible approach. Recent GeSn laser developments rely on increasing the band stru
The surprising recent observation of highly emissive triplet-states in lead halide perovskites accounts for their orders-of-magnitude brighter optical signals and high quantum efficiencies compared to other semiconductors. This makes them attractive
10 {mu}m lasing is studied in a compact CO2-He cell pressurized up to 15 atm when optically pumped by a ~50 mJ Fe:ZnSe laser tunable around 4.3 {mu}m. The optimal pump wavelength and partial pressure of CO2 for generating 10 {mu}m pulses are found to
Pauli blockade occurs when the excited electrons fill up the states near the conduction bands and block subsequent absorption in semiconductors, and has been widely applied in mode-locking for passively-pulsed-laser systems. In this letter, we report
Continuous-wave mode-locked femtosecond 2 um solid-state laser with a c-cut Tm:CaYAlO4 as gain medium was experimentally demonstrated. The mode locked laser generated stable pulses with average output power as high as 531 mW, pulse duration of 496 fs