ترغب بنشر مسار تعليمي؟ اضغط هنا

Curvature-driven AC-assisted creep dynamics of magnetic domain walls

63   0   0.0 ( 0 )
 نشر من قبل Alejandro B. Kolton
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The dynamics of micrometer-sized magnetic domains in ultra-thin ferromagnetic films is so dramatically slowed down by quenched disorder that the spontaneous elastic tension collapse becomes unobservable at ambient temperature. By magneto-optical imaging we show that a weak zero-bias AC magnetic field can assist such curvature-driven collapse, making the area of a bubble to reduce at a measurable rate, in spite of the negligible effect that the same curvature has on the average creep motion driven by a comparable DC field. An analytical model explains this phenomenon quantitatively.



قيم البحث

اقرأ أيضاً

We study the ultra slow domain wall motion in ferromagnetic thin films driven by a weak magnetic field. Using time resolved magneto-optical Kerr effect microscopy, we access to the statistics of the intermittent thermally activated domain wall jumps between deep metastable states. Our observations are consistent with the existence of creep avalanches: roughly independent clusters with broad size and ignition waiting-time distributions, each one composed by a large number of spatio-temporally correlated thermally activated elementary events. Moreover, we evidence that the large scale geometry of domain walls is better described by depinning rather than equilibrium universal exponents.
Recent experimental studies of magnetic domain expansion under easy-axis drive fields in materials with a perpendicular magnetic anisotropy have shown that the domain wall velocity is asymmetric as a function of an external in plane magnetic field. T his is understood as a consequence of the inversion asymmetry of the system, yielding a finite chiral Dzyaloshinskii-Moriya interaction. Numerous attempts have been made to explain these observations using creep theory, but, in doing so, these have not included all contributions to the domain wall energy or have introduced additional free parameters. In this article we present a theory for creep motion of chiral domain walls in the creep regime that includes the most important contributions to the domain-wall energy and does not introduce new free parameters beyond the usual parameters that are included in the micromagnetic energy. Furthermore, we present experimental measurements of domain wall velocities as a function of in-plane field that are well decribed by our model, and from which material properties such as the strength of the Dzyaloshinskii-Moriya interaction and the demagnetization field are extracted.
Magnetic field driven domain wall velocities in [Co/Ni] based multilayers thin films have been measured using polar magneto-optic Kerr effect microscopy. The low field results are shown to be consistent with the universal creep regime of domain wall motion, characterized by a stretched exponential growth of the velocity with the inverse of the applied field. Approaching the depinning field from below results in an unexpected excess velocity with respect to the creep law. We analyze these results using scaling theory to show that this speeding up of domain wall motion can be interpreted as due to the increase of the size of the deterministic relaxation close to the depinning transition. We propose a phenomenological model which allows to accurately fit the observed excess velocity and to obtain characteristic values for the depinning field $H_d$, the depinning temperature $T_d$, and the characteristic velocity scale $v_0$ for each sample.
127 - A. Pivano , V. O. Dolocan 2016
The nonlinear dynamics of a transverse domain wall (TDW) in Permalloy and Nickel nanostrips with two artificially patterned pinning centers is studied numerically up to rf frequencies. The phase diagram frequency - driving amplitude shows a rich vari ety of dynamical behaviors depending on the material parameters and the type and shape of pinning centers. We find that T-shaped traps (antinotches) create a classical double well Duffing potential that leads to a small chaotic region in the case of Nickel and a large one for Py. In contrast, the rectangular constrictions (notches) create an exponential potential that leads to larger chaotic regions interspersed with periodic windows for both Py and Ni. The influence of temperature manifests itself by enlarging the chaotic region and activating thermal jumps between the pinning sites while reducing the depinning field at low frequency in the notched strips.
The creep motion of domain walls driven by external fields in magnetic thin films is described by universal features related to the underlying depinning transition. One key parameter in this description is the roughness exponent characterizing the gr owth of fluctuations of the domain wall position with its longitudinal length scale. The roughness amplitude, which gives information about the scale of fluctuations, however, has received less attention. Albeit their relevance, experimental reports of the roughness parameters, both exponent and amplitude, are scarce. We report here experimental values of the roughness parameters for different magnetic field intensities in the creep regime at room temperature for a Pt/Co/Pt thin film. The mean value of the roughness exponent is $zeta = 0.74$, and we show that it can be rationalized as an effective value in terms of the known universal values corresponding to the depinning and thermal cases. In addition, it is shown that the roughness amplitude presents a significant increase with decreasing field. These results contribute to the description of domain wall motion in disordered thin magnetic systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا