ﻻ يوجد ملخص باللغة العربية
We study the ultra slow domain wall motion in ferromagnetic thin films driven by a weak magnetic field. Using time resolved magneto-optical Kerr effect microscopy, we access to the statistics of the intermittent thermally activated domain wall jumps between deep metastable states. Our observations are consistent with the existence of creep avalanches: roughly independent clusters with broad size and ignition waiting-time distributions, each one composed by a large number of spatio-temporally correlated thermally activated elementary events. Moreover, we evidence that the large scale geometry of domain walls is better described by depinning rather than equilibrium universal exponents.
The dynamics of micrometer-sized magnetic domains in ultra-thin ferromagnetic films is so dramatically slowed down by quenched disorder that the spontaneous elastic tension collapse becomes unobservable at ambient temperature. By magneto-optical imag
Recent experimental studies of magnetic domain expansion under easy-axis drive fields in materials with a perpendicular magnetic anisotropy have shown that the domain wall velocity is asymmetric as a function of an external in plane magnetic field. T
Domain walls, optimal droplets and disorder chaos at zero temperature are studied numerically for the solid-on-solid model on a random substrate. It is shown that the ensemble of random curves represented by the domain walls obeys Schramms left passa
Ferroelectric switching and nanoscale domain dynamics were investigated using atomic force microscopy on monocrystalline Pb(Zr0.2Ti0.8)O3 thin films. Measurements of domain size versus writing time reveal a two-step domain growth mechanism, in which
We present a quantitative and comparative study of magnetic field driven domain wall depinning transition in different ferromagnetic ultrathin films over a wide range of temperature. We reveal a universal scaling function accounting for both drive an