ﻻ يوجد ملخص باللغة العربية
Magnetic field driven domain wall velocities in [Co/Ni] based multilayers thin films have been measured using polar magneto-optic Kerr effect microscopy. The low field results are shown to be consistent with the universal creep regime of domain wall motion, characterized by a stretched exponential growth of the velocity with the inverse of the applied field. Approaching the depinning field from below results in an unexpected excess velocity with respect to the creep law. We analyze these results using scaling theory to show that this speeding up of domain wall motion can be interpreted as due to the increase of the size of the deterministic relaxation close to the depinning transition. We propose a phenomenological model which allows to accurately fit the observed excess velocity and to obtain characteristic values for the depinning field $H_d$, the depinning temperature $T_d$, and the characteristic velocity scale $v_0$ for each sample.
We present a quantitative and comparative study of magnetic field driven domain wall depinning transition in different ferromagnetic ultrathin films over a wide range of temperature. We reveal a universal scaling function accounting for both drive an
The creep motion of domain walls driven by external fields in magnetic thin films is described by universal features related to the underlying depinning transition. One key parameter in this description is the roughness exponent characterizing the gr
The dynamics of micrometer-sized magnetic domains in ultra-thin ferromagnetic films is so dramatically slowed down by quenched disorder that the spontaneous elastic tension collapse becomes unobservable at ambient temperature. By magneto-optical imag
The magnetostatic interaction between magnetic domain walls (DWs) in adjacent nanotracks has been shown to produce strong inter-DW coupling and mutual pinning. In this paper, we have used electrical measurements of adjacent spin-valve nanotracks to f
We study the ultra slow domain wall motion in ferromagnetic thin films driven by a weak magnetic field. Using time resolved magneto-optical Kerr effect microscopy, we access to the statistics of the intermittent thermally activated domain wall jumps