ﻻ يوجد ملخص باللغة العربية
The receptive fields of simple cells in the visual cortex can be understood as linear filters. These filters can be modelled by Gabor functions, or by Gaussian derivatives. Gabor functions can also be combined in an `energy model of the complex cell response. This paper proposes an alternative model of the complex cell, based on Gaussian derivatives. It is most important to account for the insensitivity of the complex response to small shifts of the image. The new model uses a linear combination of the first few derivative filters, at a single position, to approximate the first derivative filter, at a series of adjacent positions. The maximum response, over all positions, gives a signal that is insensitive to small shifts of the image. This model, unlike previous approaches, is based on the scale space theory of visual processing. In particular, the complex cell is built from filters that respond to the twod differential structure of the image. The computational aspects of the new model are studied in one and two dimensions, using the steerability of the Gaussian derivatives. The response of the model to basic images, such as edges and gratings, is derived formally. The response to natural images is also evaluated, using statistical measures of shift insensitivity. The relevance of the new model to the cortical image representation is discussed.
This thesis is designed to be a self-contained exposition of the neurobiological and mathematical aspects of sensory perception, memory, and learning with a bias towards olfaction. The final chapters introduce a new approach to modeling focusing more
In this paper I have given a mathematical model of Cell reprogramming from a different contexts. Here I considered there is a delay in differential regulator rate equations due to intermediate regulators regulations. At first I gave some basic mathem
We describe a large-scale functional brain model that includes detailed, conductance-based, compartmental models of individual neurons. We call the model BioSpaun, to indicate the increased biological plausibility of these neurons, and because it is
While theories postulating a dual cognitive system take hold, quantitative confirmations are still needed to understand and identify interactions between the two systems or conflict events. Eye movements are among the most direct markers of the indiv
Retinal circuitry transforms spatiotemporal patterns of light into spiking activity of ganglion cells, which provide the sole visual input to the brain. Recent advances have led to a detailed characterization of retinal activity and stimulus encoding