ﻻ يوجد ملخص باللغة العربية
Retinal circuitry transforms spatiotemporal patterns of light into spiking activity of ganglion cells, which provide the sole visual input to the brain. Recent advances have led to a detailed characterization of retinal activity and stimulus encoding by large neural populations. The inverse problem of decoding, where the stimulus is reconstructed from spikes, has received less attention, in particular for complex input movies that should be reconstructed pixel-by-pixel. We recorded around a hundred neurons from a dense patch in a rat retina and decoded movies of multiple small discs executing mutually-avoiding random motions. We constructed nonlinear (kernelized) decoders that improved significantly over linear decoding results, mostly due to their ability to reliably separate between neural responses driven by locally fluctuating light signals, and responses at locally constant light driven by spontaneous or network activity. This improvement crucially depended on the precise, non-Poisson temporal structure of individual spike trains, which originated in the spike-history dependence of neural responses. Our results suggest a general paradigm in which downstream neural circuitry could discriminate between spontaneous and stimulus-driven activity on the basis of higher-order statistical structure intrinsic to the incoming spike trains.
Brain-computer interfaces (BCIs) have shown promising results in restoring motor function to individuals with spinal cord injury. These systems have traditionally focused on the restoration of upper extremity function; however, the lower extremities
We present a method to estimate Gibbs distributions with textit{spatio-temporal} constraints on spike trains statistics. We apply this method to spike trains recorded from ganglion cells of the salamander retina, in response to natural movies. Our an
Local field potentials (LFPs) sampled with extracellular electrodes are frequently used as a measure of population neuronal activity. However, relating such measurements to underlying neuronal behaviour and connectivity is non-trivial. To help study
The receptive fields of simple cells in the visual cortex can be understood as linear filters. These filters can be modelled by Gabor functions, or by Gaussian derivatives. Gabor functions can also be combined in an `energy model of the complex cell
Neural coding is a field of study that concerns how sensory information is represented in the brain by networks of neurons. The link between external stimulus and neural response can be studied from two parallel points of view. The first, neural enco