ﻻ يوجد ملخص باللغة العربية
While theories postulating a dual cognitive system take hold, quantitative confirmations are still needed to understand and identify interactions between the two systems or conflict events. Eye movements are among the most direct markers of the individual attentive load and may serve as an important proxy of information. In this work we propose a computational method, within a modified visual version of the well-known Stroop test, for the identification of different tasks and potential conflicts events between the two systems through the collection and processing of data related to eye movements. A statistical analysis shows that the selected variables can characterize the variation of attentive load within different scenarios. Moreover, we show that Machine Learning techniques allow to distinguish between different tasks with a good classification accuracy and to investigate more in depth the gaze dynamics.
Estimating eye-gaze from images alone is a challenging task, in large parts due to un-observable person-specific factors. Achieving high accuracy typically requires labeled data from test users which may not be attainable in real applications. We obs
Audio classification can distinguish different kinds of sounds, which is helpful for intelligent applications in daily life. However, it remains a challenging task since the sound events in an audio clip is probably multiple, even overlapping. This p
Modern deep learning techniques have enabled advances in image-based dietary assessment such as food recognition and food portion size estimation. Valuable information on the types of foods and the amount consumed are crucial for prevention of many c
End-to-end models with auto-regressive decoders have shown impressive results for automatic speech recognition (ASR). These models formulate the sequence-level probability as a product of the conditional probabilities of all individual tokens given t
Hyperspectral images (HSIs) can provide rich spatial and spectral information with extensive application prospects. Recently, several methods using convolutional neural networks (CNNs) to reconstruct HSIs have been developed. However, most deep learn