ﻻ يوجد ملخص باللغة العربية
The strong fascination exerted by the binary compound of FeSe demands reliable engineering protocols and more effective approaches towards inducing superconductivity in FeSe thin films. Our study addresses the peculiarities in pulsed laser deposition which determine FeSe thin film growth and focuses on the film/substrate interface, the tendency for domain matching epitaxial growth but also the disadvantage of chemical heterogeneity. We propose that homogenization of the substrate surface improves the control of stoichiometry, texture, and nanostrain in a way that favors superconductivity even in ultrathin FeSe films. The controlled interface in FeSe/Fe/MgO demonstrates the proof-of-principle.
The significantly enhanced superconducting transition temperature ($T_c$) of an FeSe monolayer on SrTiO$_3$(001) substrate has attracted extensive attention in recent years. Here, based on first-principles electronic structure calculations, we propos
Fermi surface topology and pairing symmetry are two pivotal characteristics of a superconductor. Superconductivity in one monolayer (1ML) FeSe thin film has attracted great interest recently due to its intriguing interfacial properties and possibly h
Nematic state, where the system is translationally invariant but breaks the rotational symmetry, has drawn great attentions recently due to experimental observations of such a state in both cuprates and iron-based superconductors. The mechanism of ne
We report the successful growth of tetragonal FeS film with one or two unit-cell (UC) thickness on SrTiO3(001) substrate by molecular beam epitaxy. Large lattice constant mismatch with the substrate leads to high density of defects in single UC FeS,
The high temperature superconductivity in single-unit-cell (1UC) FeSe on SrTiO3 (STO)(001) and the observation of replica bands by angle-resolved photoemission spectroscopy (ARPES) have led to the conjecture that the coupling between FeSe electron an